动态 | 还在用PS磨皮去皱?看看如何用神经网络高度还原你的年轻容貌!

用机器学习合成人像照片,使照片中的人看起来更年轻或年老的方法已经屡见不鲜。不过据雷锋网消息,近日,来自法国Orange实验室的Enter Grigory Antipov和他的朋友们研发出一种更省时、合成结果更准确的方法 。

据雷锋网小编了解,该方法的工作原理是:

  • 让两个深度学习机器同时工作。两个机器一个用来生成人脸,一个用来鉴别人脸。
  • 而且两个机器会通过分析人脸图像,提前习得各年龄段人脸大概是什么样子的。
  • 年龄段分类标准为:0-18, 19- 29, 30-39, 40-49, 50-59, 以及60岁以上。

在每个年龄分组里,研究人员让机器学习超过5,000张标记过年龄的人脸图像。这些图像均来自于 Web Film Database以及维基百科。通过这种方法,机器可以学会每个年龄分组内的标签,而正是这个习得的总结标签让生成人脸的机器把不同年龄的人像照片准确加工成用户所希望的年龄的样子,无论是让照片中的人变得年轻还是变得年老。

但是,同其合成人像的机器一样,这里面存在的一个问题便是在合成过程中,机器可能会丧失掉图片原有的识别资料(id)。

不过俗话说得好,只要思想不滑坡,方法总比困难多。这时候第二个深度学习机器——鉴别人脸机器就开始起作用了。它的解决办法是:看这个照片的识别资料是不是唯一的,如果不是的话照片则会被拒绝输出。

实验证明,这个方法相当有效。经雷锋网小编总结,他们的检验方法是:

  1. 研究团队让机器合成10,000张从IMDB- Wikipedia数据库中抽取出来的人像。而且这些照片之前从未用来训练机器。
  2. 然后他们用OpenFace软件程序来检测训练前后的两张照片是否为同一个人。
  3. 测试结果为,有80%经训练的照片都被认为和原照片是同一个人。作为对比,用其他方法加工照片,平均测试结果只有50%。

不过,可能还有一个更能考验该研究准确性的方法。研究人员可以把合成的年轻照片和此人在该年龄阶段的真实照片相对比。想要在这个测试中达到高度准确,Antipov 和他的伙伴们可能还有一段路需要走。

最后,Antipov和他的伙伴表示,他们的研究成果目前已应用到确认长期(几年)失踪人口的身份上。而且他们认为,把该技术的算法公开之后,这个方法可能还会有更多玩法。

via:Newgeekers

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-02-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【AAAI oral】阿里北大提出新attention建模框架,一个模型预测多种行为

作者:周畅,白金泽,宋军帅,刘效飞,赵争超,陈修司,高军 【新智元导读】本文提出一种基于注意力机制的用户异构行为序列的建模框架,并将其应用到推荐场景中。作者提出...

4229
来自专栏数据科学与人工智能

【数据科学】数据科学书上很少提及的三点经验

这是数据科学大行其道的时代。各类课程、博客、培训学校如雨后春笋般出现。然而,每次我浏览这些学习资料时,我发现它们过于强调一些具体的算法。理解逻辑回归或者深度学习...

2156
来自专栏华章科技

人人都能看懂的机器学习!3个案例详解聚类、回归、分类算法

机器学习,一言以蔽之就是人类定义一定的计算机算法,让计算机根据输入的样本和一些人类的干预来总结和归纳其特征和特点,并用这些特征和特点和一定的学习目标形成映射关系...

874
来自专栏AI科技大本营的专栏

关于那些羞羞的不可描述的动作分析,一个正经的机器学习项目

现在,机器学习已经应用在各行各业中,开发工程师队伍越发壮大,其中有一类工程师的工作内容在外行人眼里似乎更”丰富多彩“,那就是鉴黄师。现在我们看到的视频都是经过他...

911
来自专栏CSDN技术头条

深度学习 vs. 大数据:神经网络权值的版权属于谁?

【编者按】深度神经网络能够焕发新春,大数据功不可没,然而大数据的版权是否应当延伸到深度学习产生的知识,这是一个现实的问题。本文通过ImageNet可视化大数据、...

1976
来自专栏数据科学与人工智能

【数据科学】数据科学书上很少提及的三点经验

【编者按】本文作者指出了关于数据科学书上很少提及的三点经验:模型评价方法是关键,特征提取是根本,模型选择而非数据集规模最费时间。文章指出,处理上万维的特征和几十...

24810
来自专栏AI科技大本营的专栏

听说现在赶火车刷脸就进站了!Out,跟脸有关的最新玩法是你说什么,表情包就演什么

十一结束,假期开工返乡潮仍在继续。就在昨日,一则视频刷爆朋友圈。 视频里,北京、广州、上海、成都、武汉的火车站都相继开通自助“刷脸”进站通道。 乘客惊呼“连...

2414
来自专栏AI科技评论

探讨 | 机器学习的本质

作为机器学习的一个分支,深度学习可以说是当下相当热门的一个话题。像Google、Microsoft、IBM这样的巨头都围绕深度学习重点投资了一系列新兴项目,他...

3237
来自专栏AI研习社

现在 tensorflow 和 mxnet 很火,是否还有必要学习 scikit-learn 等框架?

原题如下: 现在 tensorflow 和 mxnet 很火,那么对于深度学习(机器学习)准备入门的学生还有必要学习 scikit-learning,caffe...

42510
来自专栏算法channel

NLP入门:CNN,RNN应用文本分类,个性化搜索,苹果和乔布斯关系抽取(2)

前篇 一文了解自然语言处理的每个范畴用到的核心技术,难点和热点(1), 这部分涉及的NLP范畴包括: 中文分词 词性标注 句法分析 文本分类背景 下面介绍,文...

4716

扫码关注云+社区