机器学习该怎么入门?

机器学习该怎么入门?

本人大学本科,对机器学习很感兴趣,想从事这方面的研究。在网上看到机器学习有一些经典书如Bishop的PRML, Tom Mitchell的machine learning,还有pattern classification,不知该如何入门?哪本书比较容易理解?

自然语言处理民工

我要翻译一把quora了(Quora - The best answer to any question),再加点我的理解,我相信会是一个好答案。

1. Python/C++/R/Java - you will probably want to learn all of these languages at some point if you want a job in machine-learning. Python's Numpy and Scipy libraries are awesome because they have similar functionality to MATLAB, but can be easily integrated into a web service and also used in Hadoop (see below). C++ will be needed to speed code up. R is great for statistics and plots, and Hadoop is written in Java, so you may need to implement mappers and reducers in Java (although you could use a scripting language via Hadoop streaming )

首先,你要熟悉这四种语言。Python因为开源的库比较多,可以看看Numpy和Scipy这两个库,这两个都可以很好的融入网站开发以及Hadoop。C++可以让你的代码跑的更快,R则是一个很好地统计工具。而你想很好地使用Hadoop你也必须懂得java,以及如何实现map reduce

2. Probability and Statistics: A good portion of learning algorithms are based on this theory. Naive Bayes, Gaussian Mixture Models , Hidden Markov Models , to name a few. You need to have a firm understanding of Probability and Stats to understand these models. Go nuts and study measure theory . Use statistics as an model evaluation metric: confusion matrices, receiver-operator curves, p-values, etc.

我推荐统计学习方法 李航写的,这算的上我mentor的mentor了。理解一些概率的理论,比如贝叶斯,SVM,CRF,HMM,决策树,AdaBoost,逻辑斯蒂回归,然后再稍微看看怎么做evaluation 比如P R F。也可以再看看假设检验的一些东西。

3. Applied Math + Algorithms: For discriminate models like SVMs , you need to have a firm understanding of algorithm theory. Even though you will probably never need to implement an SVM from scratch, it helps to understand how the algorithm works. You will need to understand subjects like convex optimization , gradient decent , quadratic programming , lagrange , partial differential equations , etc. Get used to looking at summations .

机器学习毕竟是需要极强极强数学基础的。我希望开始可以深入的了解一些算法的本质,SVM是个很好的下手点。可以从此入手,看看拉格朗日,凸优化都是些什么

4. Distributed Computing: Most machine learning jobs require working with large data sets these days (see Data Science) . You cannot process this data on a single machine, you will have to distribute it across an entire cluster. Projects like Apache Hadoop and cloud services like Amazon's EC2 makes this very easy and cost-effective. Although Hadoop abstracts away a lot of the hard-core, distributed computing problems, you still need to have a firm understanding of map-reduce , distribute-file systems , etc. You will most likely want to check out Apache Mahout and Apache Whirr .

熟悉分布计算,机器学习当今必须是多台机器跑大数据,要不然没啥意义。请熟悉Hadoop,这对找工作有很大很大的意义。百度等公司都需要hadoop基础。

5. Expertise in Unix Tools: Unless you are very fortunate, you are going to need to modify the format of your data sets so they can be loaded into R,Hadoop,HBase,etc. You can use a scripting language like python (using re) to do this but the best approach is probably just master all of the awesome unix tools that were designed for this: cat , grep , find , awk , sed , sort , cut, tr , and many more. Since all of the processing will most likely be on linux-based machine (Hadoop doesnt run on Window I believe), you will have access to these tools. You should learn to love them and use them as much as possible. They certainly have made my life a lot easier. A great example can be found here .

熟悉Unix的Tool以及命令。百度等公司都是依靠Linux工作的,可能现在依靠Windows的Service公司已经比较少了。所以怎么也要熟悉Unix操作系统的这些指令吧。我记得有个百度的面试题就是问文件复制的事情。

6. Become familiar with the Hadoop sub-projects: HBase, Zookeeper, Hive , Mahout, etc. These projects can help you store/access your data, and they scale.

机器学习终究和大数据息息相关,所以Hadoop的子项目要关注,比如HBase Zookeeper Hive等等

7. Learn about advanced signal processing techniques: feature extraction is one of the most important parts of machine-learning. If your features suck, no matter which algorithm you choose, your going to see horrible performance. Depending on the type of problem you are trying to solve, you may be able to utilize really cool advance signal processing algorithms like: wavelets , shearlets , curvelets, contourlets, bandlets [46]. Learn about time-frequency analysis , and try to apply it to your problems. If you have not read about Fourier Analysis and Convolution[, you will need to learn about this stuff too. The ladder is signal processing 101 stuff though.

这里主要是在讲特征的提取问题。无论是分类(classification)还是回归(regression)问题,都要解决特征选择和抽取(extraction)的问题。他给出了一些基础的特征抽取的工具如小波等,同时说需要掌握傅里叶分析和卷积等等。这部分我不大了解,大概就是说信号处理你要懂,比如傅里叶这些。。。

Finally, practice and read as much as you can. In your free time, read papers like Google Map-Reduce, Google File System, Google Big Table , The Unreasonable Effectiveness of Data ,etc There are great free machine learning books online and you should read those also. Here is an awesome course I found and re-posted on github. Instead of using open source packages, code up your own, and compare the results. If you can code an SVM from scratch, you will understand the concept of support vectors, gamma, cost, hyperplanes, etc. It's easy to just load some data up and start training, the hard part is making sense of it all.

  • 总之机器学习如果想要入门分为两方面: 一方面是去看算法,需要极强的数理基础(真的是极强的),从SVM入手,一点点理解。 另一方面是学工具,比如分布式的一些工具以及Unix~

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-07-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏华章科技

这套"网红试卷"火了!数学老师您应该是段子手出身吧?

导读:其实,这是湖北省荆州中学的一套网红试卷,连命题人都是“2015级数学组的老头儿们”,每道题都是“鸡汤”加“知识点”的组合,并用段子引出提问,时而风趣,时而...

683
来自专栏大数据文摘

“微笑传递”背后的数据分析

1214
来自专栏AI2ML人工智能to机器学习

给能量以自由吧!

在“随机眼里的临界”里面我们介绍了先驱 玻尔兹曼Boltzmann 受到Maxwell的影响, 同时被影响的还有另外一位大神叫 吉布斯 Gibbs, 这是今天的...

823
来自专栏https://www.cnblogs.com/L

【自然语言处理篇】--聊天机器人从初始到应用

维基百科中的机器人是指主要用于协助编者执行大量自动化、高速或机械式、繁琐的编辑工作的计算机程序或脚本及其所登录的帐户。

812
来自专栏WOLFRAM

Mathematica 谜中智 | 赏九美图 戏九连环

1725
来自专栏数据派THU

教你用Python解锁“吃鸡”的正确姿势!

本文用Python分析吃鸡比赛的真实数据,解答至关重要的9个问题,助你提高吃鸡概率。

1473
来自专栏PPV课数据科学社区

【笔记】CDA LEVEL II 数据建模师培训学习笔记(一)软件安装

? 写在前面:此笔记是PPV课学员张梦根据李玉玺老师在CDA LEVEL II 数据建模师培训的上课内容整理而成的。 ———————————–作者说明——...

31110
来自专栏IT派

大吉大利,今晚如何用 Python 解锁“吃鸡”的正确姿势

大吉大利,今晚吃鸡~ 今天跟朋友玩了几把吃鸡,经历了各种死法,还被嘲笑说论女生吃鸡的100种死法,比如被拳头抡死、跳伞落到房顶边缘摔死 、把吃鸡玩成飞车被车技秀...

732
来自专栏非著名程序员

推荐一套国外超棒的计算机科学视频课程(不是广告)

861

利用基因突变和K均值预测地区种群

这是一篇关于西北基因组中心的Deborah Siegel和华盛顿大学联合Databricks的Denny Lee,就ADAM和Spark基因组变异分析方面的合作...

23310

扫码关注云+社区