如何在业余时间学习数据分析?

我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。

现在工作之外的时间里想学习一下数据分析或者数据挖掘。现在大数据这个词搞得蛮火的,不少公司也有在招聘数据分析员。

抱着「技多不压身」的想法我也想稍微学习一下。说不定以后的工作也会需要。我稍微了解了一下,数据分析最基础就是用excel来工作。不过我计算机专业出身的人,还是想通过用编程语言的方法来学习。听说R语言不错,我也稍微了解了一下。

  • 不过现在要学数据分析的话,我可以从哪里着手?
  • 从哪里弄到有分析价值的数据?
  • 在开源社区有没有开源项目适合用来学习数据分析?
  • 可以自己动手做个什么项目来实践?

事先说一句,Python Rocks, especially for Data scientist! 不是说 R 不好,我个人觉得 R 别别扭扭的,但是现在 R 很多,而且 R 作为数据分析是一门好语言。选择在个人,我只是说 Python Rocks! 回答你的问题:

不过现在要学数据分析的话,我可以从哪里着手?

首先,依据你的情况,最好是有一个你熟悉背景的项目或者例子,不一定是「数据分析」项目,只要你能弄到数据,然后清楚要分析的对象和目的就好。 接下来说方法,现在有很多课程可以帮助你学习这些方法,具体哪个方法好,完全看你的问题是什么,根据目的选方法。具体有哪些方法,请参考下面的书单。鉴于你会 Python,推荐机器学习实战

入门读物:

  1. 深入浅出数据分析 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。
  2. 啤酒与尿布 通过案例来说事情,而且是最经典的例子。难易程度:非常易。
  3. 数据之美 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。
  4. 数学之美 这本书非常棒啦,入门读起来很不错!

数据分析:

  1. SciPy and NumPy 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。
  2. Python for Data Analysis 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!
  3. Bad Data Handbook 很好玩的书,作者的角度很不同。

适合入门的教程:

  1. 集体智慧编程 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。
  2. Machine Learning in Action 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: 王斌_ICTIR)已经翻译这本书了 机器学习实战 。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一!
  3. Building Machine Learning Systems with Python 虽然是英文的,但是由于写得很简单,比较理解,又有 Python 代码跟着,辅助理解。
  4. 数据挖掘导论 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。
  5. Machine Learning for Hackers 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。

稍微专业些的:

  1. Introduction to Semi-Supervised Learning 半监督学习必读必看的书。
  2. Learning to Rank for Information Retrieval 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!
  3. Learning to Rank for Information Retrieval and Natural Language Processing 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。
  4. 推荐系统实践 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
  5. Graphical Models, Exponential Families, and Variational Inference 这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。
  6. Natural Language Processing with Python NLP 经典,其实主要是讲 NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了 NLP 的很多内容了啊!

机器学习教材:

  1. The Elements of Statistical Learning 这本书有对应的中文版:统计学习基础 。书中配有R包,非常赞!可以参照着代码学习算法。
  2. 统计学习方法 李航老师的扛鼎之作,强烈推荐。难易程度:难。
  3. Machine Learning 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。
  4. Machine Learning 这书和上面的书不是一本!这书叫:Machine Learning: An Algorithmic Perspective 之前做过我带的研究生教材,由于配有代码,所以理解起来比较容易。
  5. Pattern Recognition And Machine Learning 经典中的经典。
  6. Bayesian Reasoning and Machine Learning 看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。
  7. Probabilistic Graphical Models 鸿篇巨制,这书谁要是读完了告诉我一声。
  8. Convex Optimization 凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。

从哪里弄到有分析价值的数据?

还是上面那句话,依据问题选方法,有问题了,数据其实也不愁了。

  • UCI是最经典的,不过也比较古老
  • 数据堂最近异军突起,非常值得称赞
  • 国外还有一些网站,比如http://mlcomp.org/http://mldata.org/你可以看看
  • 另外KDDCUP每年都会针对一个特定的问题进行比赛,数据集也是公开的
  • 最近几年,数据挖掘的比赛越来越多了,你可以去PASCAL上看看你感兴趣的领域,自己搜索一下
  • http://www.delicious.com/pskomoroch/dataset这个是delicious上面一个人搜集的数据集网站书签,比较杂,或许你能找到你所要的(话说delicious改版之前这个里面的内容比现在的多多了)
  • 再有就是看具体的做的内容,然后看相关学者都用什么数据集,除了LDC那种变态组织,其他很多数据都可以通过track论文中的信息或者是作者主页上的信息下载到的
  • 做数据挖掘和数据分析都是针对某一个领域或者问题去做,其实也看那个领域会不会有开放的心态去公开数据,前两年在Hans Rosling老先生在TED上公开呼吁之后,很多机构,包括联合国都公开了自己的数据

补充,在quora上面看到一个问题中的答案涉及这个问题,那个更加全面http://www.quora.com/Data/Where-can-I-get-large-datasets-open-to-the-public(http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public)

在开源社区有没有开源项目适合用来学习数据分析?

如果你是用python的话,那么numpy, scipy, matplotlib是基础的,然后就是大名鼎鼎的scikit.learn了。最近pandas也很火,可以提供类似R中dataframe的数据结构,pandas的作者 最近出版了一本书 Python for Data Analysis。

Python Rocks! scikit-learn: machine learning in Python scikit.learn 是非常非常棒的机器学习 package,文档详尽,更新速度快!你看例子,看源码,都能学到不少东西!另外,去 github 上搜搜吧,好多好东西!

可以自己动手做个什么项目来实践

Kaggle Competitions(https://www.kaggle.com/competitions) 从最下面的101开始,逐级往上! Have fun and good luck!

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-02-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PaddlePaddle

从第一本书开始,如何成为深度学习工程师(上篇)

小编结合资料与工程师经验,梳理出一条深度学习工程师的成长路径及“练级大法”,希望可以帮到各位“炼丹师”稳步进阶,畅游深度学习海洋~

742
来自专栏新智元

【重磅】Facebook 开源产业级深度学习框架 Caffe2,带来跨平台机器学习工具

【新智元导读】Facebook 开发者大会今天召开。同时,Facebook 宣布开源 production-ready 的深度学习框架 Caffe2,轻量级、模...

3037
来自专栏数据派THU

送你10本机器学习和数据科学必读书(附PDF下载)

本文共1800字,建议阅读6分钟。 让一系列免费的机器学习与数据科学书籍开启你的夏日学习之旅吧!

774
来自专栏机器人网

五本必读的深度学习圣经书籍,入门 AI 从「深度学习」开始

(以下以 Daniel Jeffries 第一人称撰写) 多年来,由于实验室研究和现实应用效果之间的鸿沟,少有人持续研究人工智能,AI 在很多领域停滞不前。...

3486
来自专栏大数据挖掘DT机器学习

当推荐算法开源包多如牛毛,为什么我们还要专门的推荐算法工程师

作为一个推荐系统业余爱好者,在机器学习领域的鄙视链中,我感觉一直地位不高,时常被搞NLP CV语音等高科技技术的朋友鄙视。 最近甚至被人问,推荐算法开源包多如牛...

3399
来自专栏机器学习算法与Python学习

看论文头疼吗?这里有一份学术论文阅读指南请查收!

对于从事学术研究的人来说,跟进最新的论文是必备的科研素质之一。但面对海量的论文更新,应该如何快速又有效地阅读论文,吸收其精华? KyleM Shannon 为我...

840
来自专栏张红林的专栏

机器学习入门书籍简介

在AIclub看到一篇机器学习入门的文章,回想自己磕磕碰碰走过的弯路,颇有感触,因此对自己从懵懂到稍稍入门过程中看过的教程做一个简单的介绍,希望帮到后来人。

4K3
来自专栏视觉求索无尽也

【文献检索】你的Paper阅读能力合格了吗(硕士生版)前言Paper从哪来Paper怎么读Paper如何写总结最后的最后参考资料

论文阅读一直是科研过程中至关重要的一环,如何收集论文,快速选取和课题匹配的论文,高效地把握论文核心思想是每个科研人员的必备素养,也是每个科研萌新(硕士研究生)苦...

581
来自专栏PPV课数据科学社区

一条通往数据科学家的必经之路!

经常有人问我“要成为数据挖掘工程师或者数据科学家应该读什么书?”类似的问题。下面是一份建议书单,同时也是成为数据科学家的指南,当然,这不包括取得合适大学学位的要...

3166
来自专栏大数据挖掘DT机器学习

如何在业余时间学习数据分析?

我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的...

2737

扫描关注云+社区