如何在业余时间学习数据分析?

我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。

现在工作之外的时间里想学习一下数据分析或者数据挖掘。现在大数据这个词搞得蛮火的,不少公司也有在招聘数据分析员。

抱着「技多不压身」的想法我也想稍微学习一下。说不定以后的工作也会需要。我稍微了解了一下,数据分析最基础就是用excel来工作。不过我计算机专业出身的人,还是想通过用编程语言的方法来学习。听说R语言不错,我也稍微了解了一下。

  • 不过现在要学数据分析的话,我可以从哪里着手?
  • 从哪里弄到有分析价值的数据?
  • 在开源社区有没有开源项目适合用来学习数据分析?
  • 可以自己动手做个什么项目来实践?

事先说一句,Python Rocks, especially for Data scientist! 不是说 R 不好,我个人觉得 R 别别扭扭的,但是现在 R 很多,而且 R 作为数据分析是一门好语言。选择在个人,我只是说 Python Rocks! 回答你的问题:

不过现在要学数据分析的话,我可以从哪里着手?

首先,依据你的情况,最好是有一个你熟悉背景的项目或者例子,不一定是「数据分析」项目,只要你能弄到数据,然后清楚要分析的对象和目的就好。 接下来说方法,现在有很多课程可以帮助你学习这些方法,具体哪个方法好,完全看你的问题是什么,根据目的选方法。具体有哪些方法,请参考下面的书单。鉴于你会 Python,推荐机器学习实战

入门读物:

  1. 深入浅出数据分析 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。
  2. 啤酒与尿布 通过案例来说事情,而且是最经典的例子。难易程度:非常易。
  3. 数据之美 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。
  4. 数学之美 这本书非常棒啦,入门读起来很不错!

数据分析:

  1. SciPy and NumPy 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。
  2. Python for Data Analysis 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!
  3. Bad Data Handbook 很好玩的书,作者的角度很不同。

适合入门的教程:

  1. 集体智慧编程 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。
  2. Machine Learning in Action 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: 王斌_ICTIR)已经翻译这本书了 机器学习实战 。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一!
  3. Building Machine Learning Systems with Python 虽然是英文的,但是由于写得很简单,比较理解,又有 Python 代码跟着,辅助理解。
  4. 数据挖掘导论 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。
  5. Machine Learning for Hackers 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。

稍微专业些的:

  1. Introduction to Semi-Supervised Learning 半监督学习必读必看的书。
  2. Learning to Rank for Information Retrieval 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!
  3. Learning to Rank for Information Retrieval and Natural Language Processing 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。
  4. 推荐系统实践 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
  5. Graphical Models, Exponential Families, and Variational Inference 这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。
  6. Natural Language Processing with Python NLP 经典,其实主要是讲 NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了 NLP 的很多内容了啊!

机器学习教材:

  1. The Elements of Statistical Learning 这本书有对应的中文版:统计学习基础 。书中配有R包,非常赞!可以参照着代码学习算法。
  2. 统计学习方法 李航老师的扛鼎之作,强烈推荐。难易程度:难。
  3. Machine Learning 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。
  4. Machine Learning 这书和上面的书不是一本!这书叫:Machine Learning: An Algorithmic Perspective 之前做过我带的研究生教材,由于配有代码,所以理解起来比较容易。
  5. Pattern Recognition And Machine Learning 经典中的经典。
  6. Bayesian Reasoning and Machine Learning 看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。
  7. Probabilistic Graphical Models 鸿篇巨制,这书谁要是读完了告诉我一声。
  8. Convex Optimization 凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。

从哪里弄到有分析价值的数据?

还是上面那句话,依据问题选方法,有问题了,数据其实也不愁了。

  • UCI是最经典的,不过也比较古老
  • 数据堂最近异军突起,非常值得称赞
  • 国外还有一些网站,比如http://mlcomp.org/http://mldata.org/你可以看看
  • 另外KDDCUP每年都会针对一个特定的问题进行比赛,数据集也是公开的
  • 最近几年,数据挖掘的比赛越来越多了,你可以去PASCAL上看看你感兴趣的领域,自己搜索一下
  • http://www.delicious.com/pskomoroch/dataset这个是delicious上面一个人搜集的数据集网站书签,比较杂,或许你能找到你所要的(话说delicious改版之前这个里面的内容比现在的多多了)
  • 再有就是看具体的做的内容,然后看相关学者都用什么数据集,除了LDC那种变态组织,其他很多数据都可以通过track论文中的信息或者是作者主页上的信息下载到的
  • 做数据挖掘和数据分析都是针对某一个领域或者问题去做,其实也看那个领域会不会有开放的心态去公开数据,前两年在Hans Rosling老先生在TED上公开呼吁之后,很多机构,包括联合国都公开了自己的数据

补充,在quora上面看到一个问题中的答案涉及这个问题,那个更加全面http://www.quora.com/Data/Where-can-I-get-large-datasets-open-to-the-public(http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public)

在开源社区有没有开源项目适合用来学习数据分析?

如果你是用python的话,那么numpy, scipy, matplotlib是基础的,然后就是大名鼎鼎的scikit.learn了。最近pandas也很火,可以提供类似R中dataframe的数据结构,pandas的作者 最近出版了一本书 Python for Data Analysis。

Python Rocks! scikit-learn: machine learning in Python scikit.learn 是非常非常棒的机器学习 package,文档详尽,更新速度快!你看例子,看源码,都能学到不少东西!另外,去 github 上搜搜吧,好多好东西!

可以自己动手做个什么项目来实践

Kaggle Competitions(https://www.kaggle.com/competitions) 从最下面的101开始,逐级往上! Have fun and good luck!

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-02-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

【推荐】想学统计学需要掌握哪些知识?

这是一个很好的问题,对于新手、特别是非统计科班出身的人来说,心里总是有这样的顾虑,掌握的统计学基础只是不够,然而又应该从哪里入手呢?以下是中国统计网整理...

3844
来自专栏新智元

DeepMind 创始人 Cell 评论:通用人工智需要怎样的学习系统?

【新智元导读】谷歌 DeepMind 创始人 Demis Hassabis 等人近日在细胞出版社期刊发表评论,拓展辅助学习系统(CLS)理论,为研究通用人工智能...

3503
来自专栏媒矿工厂

高帧率视频标准与规范简介

帧率(High Frame Rate, HFR)是指利用比正常帧率(如24帧/秒)更高的技术拍摄而成的影片。欧洲已经对高于每秒50帧的视频有了广泛的研究。

780
来自专栏量子位

人工智能技术入门该读哪些书?StackOverflow上最推荐这些

王小新 编译整理 量子位 出品 | 公众号 QbitAI 学习人工智能相关技术该读什么书?这是量子位各个微信群中出现频率极高的问题。 今天,我们就从Dev-bo...

3504
来自专栏张俊红

如何高效学习

本篇的主题是《如何高效学习》,所谓高效就是花最少的时间达到最好的效果。高效率是我们在做任何事都希望达到的,包括工作、生活、学习。本篇文章重点介绍一种可以提高学习...

3286
来自专栏量子位

想骗过人脸识别?一块钱就够了(附送几组骗AI的方法+论文)

舒石 李林 编译整理 量子位 出品 | 公众号 QbitAI 人脸识别越来越常见,今年春运已经能刷脸进站,iPhone的相册就能用人脸分类照片,社交网站上能根据...

4848
来自专栏媒矿工厂

AI如何用于现场直播场景

与许多产业一样,通过软件和算法辅助,电视与视频制作很可能被人工智能和机器学习所改造,而当前这些制作任务都是由人来执行。随着现场直播报道涉及的范围越来越广,而相关...

892
来自专栏机器学习人工学weekly

机器学习人工学2018/1/7

新年快乐! 注意下面很多链接需要科学上网,无奈国情如此 1. Berkeley AI Research blog上发了篇文章讲physical advers...

3539
来自专栏量子位

纽约大学的好奇AI特别会提问,桌游玩得比人还666

李林 编译自 TechnologyReview 量子位 出品 | 公众号 QbitAI 纽约大学的科学家们开发了一个非常“好奇”的人工智能系统,桌游玩得相当不错...

3014
来自专栏AI科技大本营的专栏

最近比较火的10篇大数据文章,看看你错过了哪篇?

翻译 | AI科技大本营(rgznai100) 参与 | Shawn Sicara团队精挑细选,了10篇在今年7月发表的大数据相关文章(Sicara是一家从事A...

3306

扫码关注云+社区