抓取链家官网北京房产信息并用python进行数据挖掘

从2014年对楼市的普遍唱衰,到2015年的价格回暖,到底发生了怎样的改变?本文就尝试通过大数据来和丰富的图表,为大家展现数据背后的数据。

  • 数据采集采用笔者用C#开发的爬虫工具。
  • 数据清洗ETL采用了笔者开发的工具软件。
  • 数据分析采用ipython notebook和pandas
  • 可视化使用了matplotlib和seaborn.
  • 热力图使用了百度地图API, 按经纬度0.01度为一个子区域,计算其中的平均值作为当前区域的房价/二手房数量。

这些数据是笔者在2014年10月年和2015年10月份两次,在链家官网上抓取的在售二手房数据,2014年约为64000条,2015年总计约7W条。数据源可能会有偏差,因此结论仅供参考。

首先我们导入所需的类库:

# -*- coding:utf-8 -*-
import mongo;
import pandas as pd;
import csv;from pandas 
import DataFrame,Series

之后加载所需的数据:

table2014 = pd.read_table("LJ2014.txt",encoding='utf-8',engine='python',quoting=csv.QUOTE_NONE)
table2015 = pd.read_table("LJ2015.txt",encoding='utf-8',engine='python',quoting=csv.QUOTE_NONE)
table2014[u'小区名']=table2014[u'小区名'].map(lambda x:unicode(x).strip("'"))
table2014[u'区县']=table2014[u'区县'].map(lambda x:unicode(x).strip("'"))
table2014[u'楼名']=table2014[u'楼名'].map(lambda x:unicode(x).strip("'"))
year= table2014[u'年份'].map(lambda x:str(x).split('/')[0])
table2014[u'小区']=table2014[u'位置'].map(lambda x:unicode(x).strip("'"))

疯长的房价

从1992年到2015年,北京的房价经历了怎样的疯狂?可以查看下面的图表。

可以看到,1992年到2002年,呈现一个非常稳定的状态。从2008年起,北京的房价如同火箭一般上窜。

有意思的是,如果按照建造时间来绘制图表,会发现在2000年和2004年左右,达到高峰。在6W套二手房中,2000年总共建造了7697套,占比百分之11.21%。

xcqu2014=table2014.groupby(by=u'位置')
p=year.value_counts();
p=p.sort_index()[50:-1]
p.plot(title=u'北京各年建造房屋数量变化')

到了2014年,北京各个区县的二手房价格如下图:

areag=table2014.groupby(by=u'区县')
areag[u'价格'].mean().order(ascending=True).plot(kind='barh',title=u'各城区的二手房平均房价')

西城区和东城区的平均价格在五万五左右,之所以没有达到网上其他数据所提到的丧心病狂的9万,是因为我们分析的是二手房。目前二环内新楼盘的数量极少,几乎没有讨论的价值。

我们将房价以热力图方式绘制在地图上,就会非常直观:

颜色越深,代表其价格越高。除了西城,东城这些老城区,中关村(包含大量的学区房)和国贸(北京CBD)都价格高企。

如果我们改变缩放等级,进一步缩小地图范围,可以看到最贵的房子,集中在西单,南锣鼓巷,国贸,以及北新桥地区。

这些最贵小区的房价有多贵呢?下面列出排名前十的十个小区的价格:

xcqu2014[u'价格'].mean().order(ascending=False)[1:10].plot(kind='barh',title=u'价格最高的十个小区的平均房价')

文华胡同的位置在哪里呢?笔者专门去搜索了一下。这个超牛无比,价格在33万/平的文华胡同在靠近闹市口大街的西单商圈。

更夸张的是,两套房子都是平房,面积分别是12平和15平,其中一套还是1949年建的。中介给出的宣传标语是,最牛实验二小学区房,抢抢抢!这么小的面积,估计是四合院的厢房改造的吧。现在官网上已经下架。

什么样的房子最多?

我们先看,什么类型的楼房最多,下面给出了楼房总体高度的比例。可以看到,二手房中,六层是最多的。国家规定,七层就要装电梯了。因此在2000年以前,大部分的居民楼都是6层。

lc=lc=table2014.groupby(by=u'楼层').size();
lc.order(ascending=False)[:20].plot(kind='barh',title=u'楼高比例')

再看看不同面积的房子所占总数的比例。我们取面积为40-140平米的房子,进行了统计分析,结论如下图:

size=table2014.groupby(by=u'面积').size();import re;
takenum= re.compile('\d+');
size=size[size.index.map(lambda x:takenum.match(x) is not None)]
size.index=size.index.map(lambda x:int(x))
size.order(ascending=False)[:100].sort_index().plot(kind='line',title=u'房型面积和对应比例')

首先选出面积值不为空且为数字的所有行,之后将其转换为int类型,后对其进行排序并绘图。

可见,60平的一室一厅或两室一厅最为常见。90平米的三居和两居也较多。

我们再对二手房存量绘制热力图:

可以看到,二手房主要集中在天通苑,北苑,望京,十里堡和通州。这基本上与北京2004年发布的《北京市城市总体规划2004-2020》的内容相符:

很有意思的是,绿色的区域相当空旷,比如笔者目前所在的三元桥地区,和酒仙桥之间隔了好大一片荒地,晚上夜跑时荒无人烟。

2014年到2015年的房价变化

下面是刚需读者最关心的内容,2014年到2015年的北京房价,经历了怎样的变化?众所周知,2014年房价走低,整体唱衰,甚至有商家打出了降价6000元/平的广告来推销房子。2015年,降准降息政策出炉,公积金贷款比例提高,北京房价回暖,我们知道肯定涨价了。但到底涨了多少呢?

这部分的代码多一些,选取价格少于10万,面积大于四十平米的房子,以减少错误的数据。求出2014年和2015年小区的交集,构造change结构,里面保存了每个小区的房子数量,2014年和2015年的平均价格。

table2014= table2014[(table2014[u'价格']<100000) & (table2014[u'面积']>40)]
table2015= table2015[(table2015[u'单价']<100000) & (table2015[u'面积']>40)]
xcqu2014=table2014.groupby(by=u'位置')

table2015[u'面积']= np.round(table2015[u'总价']*10000/table2015[u'单价'])

xcqu2015=table2015.groupby(by=u'小区')
p2015=xcqu2015.mean()[u'单价']
p2014=xcqu2014.mean()[u'价格']
xcqumonunt2014=xcqu2014.size()

xcqumerge=p2014.index&p2015.index
change= DataFrame({'2014': p2014[xcqumerge].values,'2015':p2015[xcqumerge].values,'mount2014':xcqumonunt2014[xcqumerge],'mount2015':xcqumonunt2015[xcqumerge]})

change['diff']=change['2015']-change['2014']
change['percent']= np.round( change['diff']/change['2014']*100.0) 

我们按照2014和2015年价格增减的百分比,绘制出下面的房价变化数量比例图。可以看到,房价变化基本呈现正态分布趋势。但均值不在0点,靠近5%左右,整体右移:

change[(change.percent>-30) & (change.percent<50)].groupby(by='percent').size().plot(title=u'不同涨跌幅度房子所占的数量')

经过统计,2014年的平均房价为40125/平,2015年为42535/平。涨价比例5.64%。也就是说,一套三百万的房子,平均涨了16万左右。

change[(change.percent>-30) & (change.percent<50)].mean(by='percent')

2014         40054.083797
2015         42400.225776
mount2014       15.352119
mount2015       13.466281
diff          2346.141979
percent          5.508430

我们列出10万元以下单价,2015年小区内二手房数量超过20套的涨价排名前十的小区:

change[change.mount2015>20].sort(columns='percent',ascending=False)[:10]

上地房价怎么涨了这么多?即使在北京,7万8的价格都已经是豪宅,可是上地的房子,一般都是普通的住宅。

原因还是学区房,海淀区教改使得这边的房子变化极大。 上地东里小区内建有上地实验小学,该小学可直升一零一中学上地分校,一零一中学上地分校位于上地西里北侧,就是这9年直升的诱惑导致该区域房价直线攀升。可怜天下父母心!

当然,有涨价就有降价:基本上,降价的小区都在非中心城区,例如樱花园就在顺义。

change[change.mount2015>20].sort(columns='percent',ascending=True)[:10]

结论

5%的涨幅,已经说明2015年比2014年价格回暖不少。也有少部分郊区小区降价。当然,这种涨幅和之前火箭般的涨价不可同日而语。可以肯定的是,像北京这样的城市,房子几乎是不可能大跌的。但未来的事情,谁知道呢?

安得广厦千万间,大庇天下寒士俱欢颜!

文章已经很长,因此没有将更多的内容囊括其中。我们还做了以下的事情:

  • 分析不同小区涨降价的原因并将其可视化到地图上。
  • 同一个小区中,不同的房子价格差别很大,甚至能差两万元。为什么会出现这种情况?
  • 根据房子周边的学校,医院,商场等场所,计算房子的附加价值。
  • 尝试预测不同小区未来的房价趋势。

链家在去年有约7W条数据,今年的出售二手房已经达到10W套,但是这些房源里有多少水分呢?根据2014年的数据按照编号检查一下重复:一万两千多套房子出现了两次,将近五千套房子出现过三次,甚至有一套房子出现过八次。其中水分可想而知。

同时,2014年的网页数据还会提供地理坐标信息,2015年就不存在了,所以文中涉及到地理信息的图表都是2014年的。另外,虽然对房子的位置描述非常详细,但中介不会告诉你这是几号楼几层。仅仅提供了楼房的总层高。原因不言自明。

同样,数据的准确性也有问题。很多房子价格都是1万,2万,明显是随意标的。也有一部分价格高的离谱,如88万/平。这些数据在处理前都已经筛掉。以免干扰分析结果。

http://www.cnblogs.com/buptzym/p/49929243.html

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-07-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏腾讯数据中心

敬请收藏|数据中心湿度控制方法比较

导语 温湿度是数据中心空气环境的重要指标,温度过高或过低都可能会影响到IT设备的正常运行,同样,湿度过低或过高也会对一下设备产生较为严重的影响,简单来讲,低湿会...

3543
来自专栏计算机视觉与深度学习基础

2014ACM-ICPC牡丹江赛区参赛总结

         回来之后就被没写的作业和入党的事情搞得一团糟(出门在外还是带两本书比较好),但还是抽空在下个赛区开赛之前把这篇参赛总结赶出来了。 据一开始的分...

1819
来自专栏大数据文摘

可视化经典:10幅精妙绝伦的科学视图

1062
来自专栏大数据文摘

大数据小说 | 如何用一小时看透一个初识的姑娘

1773
来自专栏CDA数据分析师

数据图处处有陷阱?五个案例教你轻松辨真伪

文 | Keith Collins 翻译 | 周炜乐 ? 数据图也有陷阱?即使数据准确、完整,其展现方式如果不易于读者理解,或是产生误导,也就丧失了它配合故事叙...

21910
来自专栏大数据文摘

可视化丨福尔摩斯探案集的数据分析

1603
来自专栏PPV课数据科学社区

教你用大数据做年终总结,提升逼格

一份好的年终总结可以回忆过往,继往开来,痛改前非;可以减轻没有完成前年设立之目标的内疚感;更可以成为给予自己新的一年可以重新做人的假象。可谓是居家旅行、自我麻痹...

2974
来自专栏AI科技评论

愚人节学术特辑:MIT教授宣布解决P=NP难题;宣扬暴力主义的GANs目前已被GUNs取代

indianexpress AI科技评论按:今天是愚人节,然而学术圈并不平静, 比西方记者跑得都快的AI科技评论编辑整理了今日的一本正经胡说八道 的学术热点,一...

2765
来自专栏java一日一条

硅谷科技巨头最刁钻面试题集锦

如果你擅长云文件存储方面的工作,你可能非常想进入谷歌、微软以及 Dropbox 等公司。但是他们都是硅谷中最受欢迎的科技公司,非常难以进入。美国主流网络媒体 B...

911
来自专栏VRPinea

新鲜的的LBS AR应用|在天上下五子棋,还能学习历史与政治知识?

晨曦渲染微蓝天空之际,大家匆匆出门,在通勤路上拥拥挤挤;夕阳西沉之时,急急忙忙下班,心心念念回家,或者去赴各种约会。

1133

扫码关注云+社区