前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >干货 | 中科院计算所王晋东:迁移学习的发展和现状 | 分享总结

干货 | 中科院计算所王晋东:迁移学习的发展和现状 | 分享总结

作者头像
AI科技评论
发布2018-03-14 15:46:21
2.1K0
发布2018-03-14 15:46:21
举报
文章被收录于专栏:AI科技评论

AI科技评论按:伴随着最近几年的机器学习热潮,迁移学习 (Transfer Learning)也成为目前最炙手可热的研究方向。

迁移学习强调通过不同领域之间的知识迁移,来完成传统机器学习较难完成的任务。它是解决标定数据难获取这一基础问题的重要手段,也是未来更好地研究无监督学习的重要方法。

在近日AI研习社的公开课上,来自中国科学院计算技术研究所的在读博士王晋东带来了题为《迁移学习的发展和现状》的分享。

王晋东,现于中国科学院计算技术研究所攻读博士学位,研究方向为迁移学习和机器学习等。他在国际权威会议ICDM、UbiComp等发表多篇文章;同时,也是知乎等知识共享社区的机器学习达人(知乎用户名:王晋东不在家)。他还在Github上发起建立了多个与机器学习相关的资源仓库,成立了超过120个高校和研究所参与的机器学习群,热心于知识的共享。个人主页:http://jd92.wang

分享内容:

各位听众各位同学大家晚上好,很荣幸收到AI研习社的邀请,这次的主题是《迁移学习的发展及现状》。

我是中国科学院计算技术研究2014级直博生王晋东,主要研究方向是迁移学习及其应用,下面是我的一些基本资料。今天主要是来分享知识,欢迎大家批评指正。

今天主要分为五部分。

一是迁移学习的基本介绍,即为什么要用迁移学习;

二是迁移学习方法的常见分类;

三是把迁移学习与深度学习结合起来的研究;

四是迁移学习的一些最新进展;

五是学习资源的推荐以及总结。

迁移学习基本介绍

先做一个小小的引子,吴恩达曾经说过,迁移学习将会是机器学习的下一个驱动力。

我们先来看一下背景:在智能大数据时代,面对数据量以及数据类型的不断增加,需要能快速构建具有强泛化能力的机器学习模型。大部分数据往往没有标注,收集标注数据或者从头开始构建模型,代价高昂且费时。

这时候就产生了一个问题:如何基于已有的数据和模型,对新数据快速构建相应的模型?

这个问题引出了迁移学习,迁移学习可以解决上述标定数据难以获取的问题。

迁移学习基本思想是利用学习目标和已有知识之间的相关性,把知识从已有的模型和数据中迁移到要学习的目标上去,如下图中所示。目前,迁移学习已被广泛应用于机器学习的许多应用中。

从数据、模型和应用这三个角度来说,迁移学习都很有必要。

总的来说,迁移学习可以减少对标定数据的依赖,通过和已有数据模型之间的迁移,更好地完成机器学习任务。

迁移学习常见方法分类

下面是迁移学习的集中方法,目前常用的主要是同构和异构迁移学习,最常用的是下图右边的几种方法。

先看基于实例的迁移学习方法。假设是源域中的一些数据和目标域会共享很多共同的特征。方法是对源域进行instance reweighting,筛选出与目标域数据相似度高的数据,然后进行训练学习。

下面为大家介绍几个经典的基于实例的迁移学习方法,方法比较简单,容易实现。

第二是基于特征的迁移学习方法。

假设是源域和目标域含有一些公共的交叉特征,方法是通过特征变换,将两个域的数据变换到同一特征空间,然后进行学习。

下面是几种比较经典的方法。

第三种是基于模型的迁移学习方法。

特点是模型相同部分直接进行迁移,好处是可以直接把已有的模型拿来用,针对目标任务做相应的修改。

代表工作有下面几个比较经典的,优点是充分利用模型之间的相似性。

最后是基于关系的迁移学习方法,可以由师生关系类比上下级关系,也可以从生物病毒的传播规律类比计算机病毒的传播。

假设是如果两个域是相似的,那么它们会共享某种相似关系。方法是利用源域学习逻辑关系网络,再应用于目标域上。这部分的研究工作比较少。

深度迁移学习

下面来分析深度迁移学习。深度学习可以学习到更鲁棒的、泛化能力更强的特征表达,迁移学习能学习到领域无关的特征表达,这和深度学习不谋而合,将两者结合,能充分利用神经网络的表达能力,学习域不变的特征表示。

下面看下最近的一些工作,14年有一篇论文探讨了神经网络的可迁移性,横轴是层数,纵轴是精度。

第二篇也是14年的,这篇文章是在AlexNet的分类器层前加入domain loss层,目前引用量也比较多。

15年发表的DAN网络对AlexNet网络的后三层都进行了域适配,还利用了Multi-kernel MMD进行距离度量,这是核心的亮点贡献。

17年的ICML提出了JAN网络,两个核心贡献如下:一是联合适配x和y的分布(JMMD度量),二是在网络中加入了adversarial学习。

这个工作加了soft labels,同时进行domain和task transfer,网络看起来比较复杂,大家可以看原文,也可以看我的专栏链接。

ADDA提出用adversarial的思想去进行domain adaptation,这篇文章也特别新,代码也开源了。

以上介绍都是我认为的比较经典的方法,是目前来说在深度迁移学习里面比较好的工作。

迁移学习的最新进展

下面来谈谈迁移学习的最新发展。

做迁移学习最重要的点是找到相似度,当源域和目标域相似度减少,如何进行成功迁移呢。15年的Transitive transfer learning给我们在这个领域开辟了道路。17年的Distant domain transfer learning是对15年的论文的延伸。

第二个比较新的进展是利用物理学知识辅助学习任务。实验效果是实线部分,作者的想法非常具有开创性。

第三个是学习迁移。我的理解是把迁移学习和增量学习进行结合,作者提出从已有的知识里自动学习比较适合的算法和参数,这个很有前瞻性,也非常有意义。

学习资源推荐及总结

下面给大家推荐一些学习资源,前面是比较经典的两个综述,第一个是杨强老师的。下面也给大家推荐一些比较知名的学者、会议、期刊等。最后是我的GitHub,在持续更新,我的知乎专栏是《小王爱迁移》,欢迎大家投稿。

今天主要是希望大家了解到迁移学习,知道迁移学习的常用方法,大概了解到深度迁移学习以及一些最新的方向。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-11-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技评论 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档