对话余凯:人工智能未来何在?深度学习+贝叶斯网络

量子位 | 若朴 牧北 发自 亚布洛尼

2月的亚布力仍是一片冰雪世界。

上周,包括李彦宏、雷军、杨元庆、王石、冯仑、沈南鹏在内的一众企业家,齐聚这个东北小镇,共同探讨经济转型与企业家创新。毫无疑问,人工智能是大佬家们谈论最多的话题之一。而对于这个话题,余凯可能是现场企业家中最有发言权的一个。

余凯,地平线机器人CEO。曾经的百度深度学习研究院(IDL)创始人,还曾在斯坦福讲授研究生课程《CS121: 人工智能概论》。

“热度不减”,余凯用这四个字来形容企业家对人工智能的关注。而且他明显感觉到,无论是投资界还是企业界,都对人工智能有了更深入的了解。“对这个产业的方向,对这里面技术的关键点和壁垒在什么地方,我觉得大家都有蛮多的思考”,余凯说。

既然大家都在进步,那么余凯这位中国人工智能领域的旗帜性人物,对AI又有什么样的思考呢?量子位以特殊的方式,围绕这一主题在亚布力与余凯展开对话。

余凯指出,深度学习不是人工智能领域唯一的技术,未来AI的发展应该把多种技术结合应用,让神经网络从不可知的黑盒状态,逐渐变成一个相对的白箱。

“深度神经网络其实更加适合做感知”,余凯表示过去十年人工智能在感知领域突飞猛进,而感知的种种进步皆是为了后续进一步作出理性的决策。在感知-推理-决策的过程中,余凯指出以推理为核心的贝叶斯网络正好可以大行其道,“我非常看好这个方向”。

尤其是未来人工智能的发展趋势之一,是小数据学习。这就需要一个完全不同的思路,不是盲目的灌数据,而是基于小数据做出决定。“就是在很多的状态空间里面,去找到风险最小的一个路径。这里面其实是各种的因果推理,不是识别”,余凯解释说。

上面已经强调深度神经网络的作用是识别,如果要进行因果推理,人工智能就需要一个新的框架。“因果推理的这个框架衍生出来的就是贝叶斯网络”,余凯强调因果推理的理论“现在应该被提上议事日程”。

余凯表示应该以一个更高的视角来看待人工智能额发展:不仅仅是当前热什么咱们就做什么,因为当时热的东西一定会过去。

以下是对话的文字实录

量子位:神经网络一直被批评是黑盒,一旦出了问题,可能无从查找原因。您怎么看待这个问题?黑盒能被揭开么?

余凯:这是一个蛮深入的问题,我们不光要谈深度学习它的优势,我们也要看到它的劣势、它的边界,这样才能找到正确前进的方向。

深度神经网络确实有这个问题,相对来讲是一个黑箱系统。所以我们也觉得在自动驾驶这个领域,其实是面临一些挑战的。因为大家希望自动驾驶是可控的、可以debug,在安全方面能得到保障的一个系统,我们不希望它出现异常的行为。

怎么去达到这一点呢?地平线其实是很早就开始意识到,深度学习不是人工智能惟一的技术,我们必须把深度学习跟其他的一些框架,比如说跟增强学习、跟网络结合在一起,使得整个系统是一个相对的白箱,这个是我们一直在研发的方向。

量子位:所以如果说现在有一些技术去取代神经网络的话,您看好的是哪个?

余凯:深度神经网络其实更加适合做感知,而贝叶斯理论的核心是推理,只有从感知到推理才能到决策。所以最终来讲,你希望达到一种理性的推理、理性的决策,这里面正好是贝叶斯网络一个大行其道的地方,所以我是非常看好这个方向。

未来汽车的自动驾驶,应该是深度学习跟贝叶斯网络结合的这么一个思路。

量子位:神经网络需要大量的数据训练才有成效,回到无人车领域,比方撞车、紧急情况等情况,就很难有大量的数据让网络学习,您怎么看待这个问题?

余凯:没错,这面临到未来的一个趋势,是一个小数据学习的问题。这个趋势要有一个完全不同的思路,而不是盲目的灌数据,因为大量采集的数据都是正常路况的数据,而这种紧急情况的数据是没有的,所以这对深度学习是一个挑战。

这就要加入更多的因果推理,因果推理的这个框架衍生出来的就是贝叶斯网络,这个是加州大学洛杉矶分校Judea Pearl教授,在80年代就已经很著名的成果,曾经在人工智能这个领域是非常主流,后来由于神经网络的发展大家淡忘了。

但是历史总是回旋往复的往上去发展。就像80年代的时候,深度神经网络其实当时也非常主流,但是90年代就被人给淡忘了。我认为80年代被Judea Pearl提出来的“因果推理”,现在应该被提上议事日程。

过去十年深度神经网络发展,让我们在感知这个领域突飞猛进。但是所有的这些人工智能,包括自动驾驶,其实感知都是为了决策来服务,所以最终要走到决策。

一旦走到决策的话,所谓这些小数据、这种紧急情况,实际上是要根据这个情况然后做一个决策,就是在很多的状态空间里面,去找到风险最小的一个路径。这里面其实是各种的因果推理,不是识别。

深度神经网络是识别,如果是因果推理,就需要有一个因果推理的框架来做这个事情。

地平线的核心团队,包括我自己的背景,都是在人工智能这个领域工作了很长时间,所以我们能够以一个更高的视角来看这个问题,不仅仅是当前热什么咱们就做什么,因为当时热的东西一定会过去。

量子位:刚刚结束的AAAI17上,大会收录的论文,来自中国的投稿数量第一次超过美国,这个数字能说明什么?以前也有统计说人工智能领域中国人很厉害。

余凯:中国整个来讲对人工智能的关注度越来越高。但论文中虽然有很多从名字能看出来是中国人,但大部分估计还是在美国的留学生或者华裔学者。数字还不能说明问题。因为中国本土的科研这块其实还是有差距的,有蛮大差距的。

我们整个创新的土壤,相对来讲还比较偏急功近利。

量子位:您之前也批评过说有一些AI企业有抄袭或者比较急功近利的情况。

余凯:对,真正愿意平心静气,去做比较长远的、创新性研究的人和企业在中国还比较少。华人学者在这个领域的规模越来越大,这也是正常的,因为我们的人口基数大,但是有没有更多的创新性的东西在这里面出来。

好像据说今年Best Paper什么之类的其实并不是华人,所以我们还是有空间继续去努力。未来我还是很乐观,华人在整个人工智能领域的影响力,最后会变得非常领先。

量子位:很多企业都说,人工智能的专业人才不好招。您在实践中,也会遇到这样的困扰么?您又是怎么解决的?

余凯:我们去年在9月份有一次大规模的巡回校招,收了一批顶尖的学生,我对这个还是比较满意,我们会进行内部培训。

包括我以前在百度的时候,当时成立深度学习研究院,那个时候中国大学没有培养什么人工智能、深度学习方面的人才,基本上很多都是我们自己培养,后来很多人在百度或者其他公司里成为顶尖的中坚力量。所以我们可以去培养。

我们有个计划,所有我们今年校招录取的学生,夏天的时候把他们全带到硅谷去,进行为期半个月的一个培训,我会请世界顶尖的专家来给他们讲课。

量子位:您是看中什么样的条件去招这些应届生、去招这些未毕业的学生的话,是需要他的逻辑好或者是工程能力强、还是就是得数学好?

余凯:我看中的,还是所谓德才兼备。

德,就是合作的能力,还有对整个使命感,对未来世界的好奇。人工智能改变世界的这么一个使命感跟好奇心,不断学习的这种愿望,我觉得这个是这个人的一个基本面。其次的话,在数学、在编程这些方面,应该有相当不错素养。

基本上是这两个方面,我们还是比较强调综合能力。比如说德这块,其实也包括学生的这种人文素质。最近我越来越觉得,好的工程师往往有很好的人文素养跟人文关怀。

量子位:现在在人工智能领域,您的公司来讲,最缺的是哪方面的人才,产品经理或者算法高手是哪方面的一个人才是比较缺的?

余凯:我觉得都需要。只是做一个研究的话,其实有的时候是需要有一个创意,而且要非常非常的出众,但是做企业的话,实际上你会发现,需要把好多不同的方面都组合在一起,最后成为一个很优秀的产品或者是技术。

企业强调的是综合能力,而学术界的技术创新是一个想法的突破,这个很不一样。所以驾驭一个企业的复杂度远比学术研究要高。

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-02-13

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【AI芯片格局最全分析】国内AI芯片百家争鸣,何以抗衡全球技术寡头

1463
来自专栏AI科技评论

人工智能之神经网络特训班课程过半,这些内容关键点你不能错过

2016 年,谷歌 AlphaGo 下围棋战胜了人类世界冠军李世石;美国白宫发布了人工智能白皮书;微软研发的 AI 语音识别首次超过了人类...人工智能一跃成为...

3459
来自专栏顾宇的研习笔记

记武汉2016年第一期学习力提升工作坊——MVP验证篇工作坊总体设计

当开始有了第一课的时候,剩下的课程我还没有准备好。只通过一些粗浅的想法形成了课程内容,主要根据学员的第一次的反馈来规划下一次课程的内容。并根据反馈对相应的课程进...

721
来自专栏IT派

太酷炫了!万科最新大数据市场研究手段曝光!

近期,由上海万科与多家高校及城市数据团合作搭建的专属于万科的大数据分析平台正式上线了。这是万科在推动房地产行业的大数据化、引领地产行业转型潮流上踏出的重要一步。

1501
来自专栏全栈数据化营销

数据分析:泉州区域餐饮业现状研究,去哪里可以吃到你想吃的?

哈哈,打个广告,昨天获得知识星球的开通邀请,于是我弄了一个圈子:主要是分享数据化营销的案例、工具、方法、思维模型、可行性分析,用数据改善产品、分析客户、研究市场...

3885
来自专栏数据冰山

用数据的方式来撕逼:LOL vs DOTA2

我写这篇文章的时候克服了两个困难: LOL和DOTA2撕了这么多年,读者是身经百战见的多了,很容易产生审美疲劳。——好在本文大规模使用了数据分析武器,目的就是打...

2915
来自专栏PPV课数据科学社区

数据到底如何搞定电影票房预测?

怎样利用微博数据从股市中掘金?气象台怎样预报天气并发布预警?Google如何通过搜索行为预报流感爆发?这些有趣的问题背后,其实都隐藏着大数据的影子。基于对搜索...

2513
来自专栏华章科技

中兴禁令扎“芯”了吗?揭秘AI芯片国内外现状

导读:近日,美国对中兴发起一张长达七年的禁令,在这期间,美国公司将禁止向中兴出售任何元器件。有分析认为,美国禁令直击中国软肋,简直扎“芯”。那么在AI领域,国内...

902
来自专栏PPV课数据科学社区

大数据处理PK,美国不知道高明到哪里去了

“大数据”(Big data),实际上意译作“高频复杂数据”更贴切一些,也更便于非从业者直观了解这个词的含义。 由于“大数据”的大并非指单纯的数据量庞大,即便是...

2846
来自专栏AI科技大本营的专栏

观察|考研加分、谈薪加倍,深度学习到底有多火

记者|白羽 国外最近的一则新闻把深度学习再次提到了风口浪尖。 文章标题“熟悉深度学习,已成为取代精通Excel,成为简历的新亮点”,着实刺激了好一轮转发。 其...

4557

扫码关注云+社区