DeepMind提出训练网络新方法,快速找到最佳超参数和模型

安妮 编译自 DeepMind官方博客 量子位 出品 | 公众号 QbitAI

从围棋到雅达利游戏、再到图像识别和语言翻译,神经网络在各领域已经崭露头角。

一直被大家忽视的是,在特定领域应用神经网络是在研究开始时就确定好的,比如用哪种类型的神经网络、用怎样的方法和数据训练它。最近DeepMind的一项研究表明,这些超参数可以通过经验、随机搜索或计算密集的搜索过程来选择。

在这篇名为《Population Based Training of Neural Networks》的论文中,研究人员提出一种训练神经网络的新方法,能让实验者快速选择最佳的超参数和模型完成任务。这种PBT(Population Based Training)法能够同时训练和优化一系列网络,快速找到最优设置。

更重要的是,PBT法不会增加计算开销。它可以像常规技术一样快速完成,并且容易集成到现有的机器学习pipeline中。

两种优化法

PBT技术是两种最常用的超参数优化方法的混合,即随机搜索手动调整

随机搜索中,神经网络群被独立地进行并行训练,训练结束后选择性能最好的模型。这就意味着只有一小部分神经网络将被优质的超参数训练,但是剩下大部分网络无法接受更好的训练,因此这种方法浪费计算资源。

超参数的随机搜索中许多超参数是并行且独立的

如果换用手动调整,研究人员首先需要推测哪个是最优的超参数,然后再训练模型提高模型表现。这个过程需要持续不断地进行,直到神经网络性能让研究人员满意为止。

这种方法的结果不错,但耗时太长,有时需要花上几个星期甚至几个月。虽然贝叶斯优化等方法可以将这个过程自动化,但耗时仍然很长,需要许多连续训练才能找到最好的超参数。

手动调整和贝叶斯优化等方法仍然低效

PBT来了

终于到了PBT大显身手的时候了!

PBT技术与随机搜索类似,都是从用随机超参数并行训练很多神经网络开始。但是,给个网络不会被独立训练,而是用其他神经网络群的信息来精炼超参数并协调模型间的计算资源。

随着神经网络群训练地进行,开发和探索过程为周期性的,确保群中的所有“工作者”基础性能良好。此外,新的超参数也在不断探索中。

也就是说,PBT可以快速利用好的超参数,将更多的训练时间投入到有最好的模型中。更重要的是,它可以在整个训练过程中调整超参数值,自动学习最佳结构。

基于群的神经网络训练示意图

实验结果

实验表明,PBT在整个任务领域非常有效。例如,研究人员在一系列具有挑战性的强化学习问题中测试这个算法。结果显示,PBT在所有情况下均能迅速找到好的超参数,并给出了超出目前最先进基线的结果。

此外,PBT对训练生成的GAN也有效。研究人员用PBT框架将最大化衡量视觉保真度的指标Inception Score,将结果从6.45改善到6.9。

研究人员还把PBT应用到谷歌最先进的机器翻译神经网络中,它们都经过了手动调整的超参数的时间表,需要几个月才能完成。通过PBT,研究人员能够找到匹配甚至超过现有的性能的超参数schedule,而无需任何手动调试,同时通常只需要训练一次。

在CIFAR-10和FeUdal网络(FuN)对吃豆小姐的训练/粉色圆点代表初始agent,蓝色圆点是最后的agent

最后,附研究论文下载地址:

file:///C:/Users/annie/Desktop/population_based_training.pdf

DeepMind博客介绍:

https://deepmind.com/blog/population-based-training-neural-networks/

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-11-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

【学习】数据模型需要多少训练数据?

有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 【编者的话】毫无疑问机器学习是大数据分析不可或缺的一部分,在使用机器学习技术...

3696
来自专栏机器之心

业界 | 腾讯 AI Lab 正式开源PocketFlow,让深度学习放入手机!

项目访问地址:https://github.com/Tencent/PocketFlow

1313
来自专栏信数据得永生

《Scikit-Learn与TensorFlow机器学习实用指南》 第1章 机器学习概览

46810
来自专栏目标检测和深度学习

你可能不知道的7个深度学习实用技巧

深度学习已经成为解决许多具有挑战性的现实世界问题的方法。对目标检测,语音识别和语言翻译来说,这是迄今为止表现最好的方法。许多人将深度神经网络(DNNs)视为神奇...

2839
来自专栏机器之心

前沿 | 超越像素平面:聚焦3D深度学习的现在和未来

想象一下,如果你正在建造一辆自动驾驶汽车,它需要了解周围的环境。为了安全行驶,你的汽车该如何感知行人、骑车的人以及周围其它的车辆呢?你可能会想到用一个摄像头来满...

1812
来自专栏新智元

如何评价周志华深度森林模型,热议会否取代深度学习 DNN

【新智元导读】昨天,新智元报道了南京大学周志华教授和冯霁的论文“深度森林”,引发很多讨论。今天,新智元整理了网上一些评价。中文内容来自知乎,已经取得授权。外网内...

4185
来自专栏AI研习社

智能手机哪家强?实时人像分割大比拼!

近年来,各种图像效果越来越受到人们的关注。散景一个很受欢迎的例子是在图像的非聚焦范围进行虚化。这个效果由快速镜头大光圈实现。不幸的是,手机摄像头很难实现这种效果...

1602
来自专栏专知

你可能不知道的7个深度学习实用技巧

【导读】前几天,深度学习工程师George Seif发表了一篇博文,总结了7个深度学习的技巧,主要从提高深度学习模型的准确性和速度两个角度来分析这些小技巧。在使...

3674
来自专栏技术翻译

深度学习和神经网络的六大趋势

神经网络的基本思想是模拟计算机“大脑”中的多个相互关联的细胞,这样它就可以从环境中学习、识别不同的模式,并做出与人类相似的决定。

2681
来自专栏新智元

DeepMind提出快速调参新算法PBT,适用GAN训练(附论文)

来源: DeepMind 编译:马文 【新智元导读】DeepMind在最新的一篇论文 Population Based Training of Neural N...

4349

扫码关注云+社区

领取腾讯云代金券