LeCun:不要夸大AlphaGo

安妮 编译整理 量子位 出品 | 公众号 QbitAI

近日,深度学习领军人物、卷积神经网络的创作者之一Yann LeCun接受了外媒采访。作为Facebook人工智能研究院(FAIR)的院长,LeCun表示距离AI的智力水平超过一名人类婴儿还有很长一段时间。

“如果媒体在报道AI时不用终结者的配图,我会很高兴。”LeCun表示。

如果一个学术大牛表示目前离超级人工智能还远得很,我们是不是应该听听他的想法。对此,The Verge专访了LeCun,量子位将对话实录编译整理如下:

问: 最近Facebook机器人“创造了自己语言”的新闻报道火热,其中有很多与实际研究不符的错误理解。对比过去几年,你觉得这类报道变多了还是变少了?

LeCun: 少了,媒体人对要讲的故事更了解了。过去你会看到无终结者不AI的情况出现,媒体100%会在报道中插入终结者的配图……现在这种状况只会偶尔发生,是好事。

问: 当这种错误报道出现时,你想对公众说什么?

LeCun: 我在公开演讲时反复提到,我们离创造真正的智能机器还很远。现在你能看到所有AI的本领——自动驾驶汽车也好,医学影像中的落地也罢,即使是AlphaGo在围棋比赛中拿到世界第一——这些都是非常窄层面上的智能,是在某些可以大量收集数据情况中为了特定功能专门训练的。

我不是想将DeepMind在AlphaGo上的研究影响往小了说,而认为是人们将AlphaGo的发展解读为机器智力发展的重要过程是不妥的。这两者完全不是一回事。

不是有一台在围棋上能打败人类的机器,就会有智能机器人满街跑,这是两个完全独立的问题,前者对后者可能几乎没有影响。

在这里我想再次重申,距离机器像人和动物一样了解世界还有很长时间。是的,在某些方面机器确实表现超人,但在一般智力因素上,机器的“智商”甚至赶不上一只老鼠。所以很多人过早考虑了某些问题……

当然,也并不是说我们不应该考虑,但至少从当前到发展中期水平时人类是安全的。我承认AI确实存在危险,但他们不是终结者啊!╮(╯▽╰)╭

问: DeepMind在AlphaGo中创造的算法也可以应用到其他科学研究中,比如蛋白质折叠和药物研究。你认为在其他地方应用这种研究容易吗?

LeCun: AlphaGo中用的是增强学习。在游戏中,这适用于有少量离散动作的情况。因为它需要很多,很多,很多的试验来运行复杂的东西,所以比较有效。

AlphaGo Zero在几天内下了数百万盘围棋,可能比人类在发明围棋以来的大师下得还要多。因为围棋是个非常简单的环境,可以在多台计算机上以每秒数千帧的速度模拟它,所以行得通……但在现实世界中,你无法以比实时更快的速度运行真实的世界,所以行不通。

要想摆脱这种局面,唯一的方法就是让机器通过学习建立内部的世界模型,这样就能超过现实提前预测世界。目前我们缺乏的就在于如何教机器构建世界模型。

比如说学开车,人类有足够好的系统模型,就算是初次开车,也知道我们需要在路上驾驶汽车,不要让车坠入悬崖或者撞树。

如果我们在模拟器中只用增强学习训练汽车,那么在撞树4万次之后它才知道这是错误行为。所以,声称只用强化学习就能提升机器智力是错误的。

Facebook在美国普林维尔的数据中心

问: 你是否认为,AI缺少超越它目前局限的基本工具?AI先驱Hinton最近提到这段话,表示当前领域内太过依赖“把它全部扔掉,然后重新开始”的方法。

LeCun: 我认为Hinton有些过度解读了,不过我完全认可“我们需要更多基础的AI研究”。例如,Hinton喜欢的模型之一是他在1985年提出的玻尔兹曼机(Boltzmann machine)。他认为这个算法很好,但实际应用中并不是很有效。

我们想找到兼具有玻尔兹曼机的简单和反向传播的效率的机器。这就是Bengio、Geoff、我和很多人在21世纪初重新开始深度学习研究以来做的事。

让我们有点小惊讶的是,最后在实践中反向传播和深度网络配合得很好。

问: 所以,考虑到AI研究中的大变革,你认为在短期内什么对消费者来说是最重要的?

LeCun: 我认为虚拟助手是件大事。现在的虚拟助手完全是照本宣科,尽管在客服等场景下有用,但这让创造机器人这事乏味、昂贵且易夭折。

Facebook在虚拟助手的研究上投入了大量精力,但还远远落后于Alexa等竞争对手

下一步的重点是让系统有更多的学习能力,也是我们在Facebook的研究方向。想象一下你有一台可以读取长文本的机器,读完后能回答任何相关问题,是不是个很实用的功能呢?

到此程度的重点是机器和人有同样的背景知识,也就是常识。但除非我们能找到让机器通过观察了解世界是如何运作的方法,否则无法实现这个想法。这里指的观察是仅仅通过看书或者看视频了解整个世界。

这是未来几年的关键性挑战,我称之为预测学习,有人称为无监督学习。

接下来的几年,随着虚拟助手越来越实用,越来越不让人失望,这些任务将有持续进展。机器将有更多常识去做设计师编写的程序之外的事情,这也是Facebook非常感兴趣的内容。

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-10-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

张钹院士:走向真正的人工智能 | CCF-GAIR 2018

6 月 29 日上午,清华大学研究院院长张钹院士为 CCF-GAIR 2018 主会场「AI 前沿技术」做了题为「走向真正的人工智能」(Towards A Re...

15650
来自专栏新智元

【干货】胡郁:科大讯飞的深度学习之路(PPT下载)

【新智元导读】科大讯飞轮值总裁胡郁今天在“第三届网易未来科技峰会”发表演讲,介绍科大讯飞深度学习发展之路:从2010年开展DNN语音识别研究,2011年上线首个...

56480
来自专栏量子位

击败水哥还不算最强,有个人工智能已经通过人类的智商测试了

这几天百度的人工智能在《最强大脑》击败“水哥”王昱珩,再次引发了人们对于人工智能的热议。然而人工智能在人脸识别的比赛中击败水哥,还远远称不上“最强大脑”,因为模...

223100
来自专栏AI科技大本营的专栏

Tomaso Poggio:深度学习需要从炼金术走向化学

记者 | 周翔 AI科技大本营1月28日消息,《麻省理工科技评论》新兴科技峰会EmTech China在北京召开,营长也受邀参加,会上有多位人工智能领域的重磅大...

44570
来自专栏AI科技评论

Yann LeCun专访:我不觉得自己有天分,但是我一直往聪明人堆里钻

AI 科技评论按:纽约大学教授、Facebook 副总裁与首席 AI 科学家 Yann LeCun 由于对深度学习的突出贡献,被誉为深度学习的「三驾马车」之一,...

10520
来自专栏大数据文摘

这个AI“魔镜”能测试你的性格,并号称要把结果告知你老板 | 墨尔本大学最新研究

童话故事中的“魔镜”能给你的颜值评分,而墨尔本大学的研究人员近来设计了一种AI“魔镜”,运用人工智能根据人们的面部特征来分析他们的性格。

13520
来自专栏数据派THU

独家 | 我这样预测了医疗AI的发展,或许你也可以(附论文链接)

原文标题:2017 in review: progress, problems, and predictions 作者:LUKEOAKDEN RAYNER 翻译...

19590
来自专栏AI科技评论

深度 | 论文被拒千百遍,团队不受待见,Yann LeCun为何仍待深度学习如初恋?

AI科技评论按:Yann LeCun是人工智能神经网络方面的大牛,现在是Facebook人工智能研发团队的领军人物。可是他的研究之路并不是一帆风顺,在神经网络变...

35970
来自专栏AI科技评论

业界 | 第四范式首席科学家杨强教授:人工智能的下一个技术风口与商业风口

AI科技评论按:本文首发于公众号“第四范式”,已获授权转载。 作为华人界首个国际人工智能协会AAAI Fellow、至今为止唯一的AAAI 华人执委,以及IEE...

345160
来自专栏钱塘大数据

【干货】成为一名数据科学家的学习三部曲

导读:如果你看到这篇文章的题目开始阅读本文,那么一定是数据科学激起了你的兴趣。你肯定希望2016年成为你的转运年,对不对?如果你从今天起坚持去执行这些新年计划,...

37060

扫码关注云+社区

领取腾讯云代金券