专栏首页灯塔大数据洞察|AlphaGo之父揭开打败柯洁的秘密:强AI是人类的终极工具

洞察|AlphaGo之父揭开打败柯洁的秘密:强AI是人类的终极工具

5月24日,在新版本AlphaGo首战以1/4子微弱优势战胜中国围棋职业九段棋手柯洁之后,“AlphaGo之父”DeepMind创始人兼CEO Demis Hassabis、AlphaGo团队负责人David Silver在人工智能高峰论坛上详解了AlphaGo的研发并就“AlphaGo意味着什么?”的问题进行了详细解答。

“AlphaGo已经展示出了创造力,也已经可以模仿人类直觉了。在过去一年,我们继续打造AlphaGo,我们想打造完美的AlphaGo,弥补它知识方面的空白。因为在与李世石的比赛中,它是有缺陷的。”

Demis Hassabis说:“在未来我们能看到人机合作的巨大力量,人类智慧将通过人工智能进一步放大。强人工智能是人类研究和探寻宇宙的终极工具。”

为什么计机下围棋非常困难?

Demis Hassabis坦言围棋非常困难,因为其复杂程度让穷举搜索都难以解决。对于计算机来说,围棋有两项难题:“不可能”写出评估程序以决定谁赢,搜索空间太过庞大。

围棋不像象棋等游戏靠计算,而是靠直觉。围棋中没有等级概念,所有棋子都一样。围棋是筑防游戏,因此需要盘算未来。小小一子可撼全局,“妙手”如受天启。

AlphaGo如何进行训练?

David Silver从技术角度详细解释了AlphaGo如何进行训练。

围棋对于机器的难点之一是评估程序的撰写。而AlphaGo团队用两种卷积神经网络去完成:策略网络和估值网络。策略网络的卷积神经网络用于决定下一步落子可能的位置,价值网络用于评估当前棋局获胜的概率。

为了应对围棋的巨大复杂性,AlphaGo 采用机器学习技术,结合了监督学习和强化学习的优势。通过训练形成一个策略网络(policy network),将棋盘上的局势作为输入信息,并对所有可行的落子位置生成一个概率分布。

然后,训练出一个价值网络(value network)对自我对弈进行预测,以 -1(对手的绝对胜利)到1(AlphaGo的绝对胜利)的标准,预测所有可行落子位置的结果。

这两个网络自身都十分强大,而 AlphaGo将这两种网络整合进基于概率的蒙特卡罗树搜索(MCTS)中,实现了它真正的优势。

最后,新版的AlphaGo 产生大量自我对弈棋局,为下一代版本提供了训练数据,此过程循环往复。

AlphaGo 如何决定落子?

在获取棋局信息后,AlphaGo会根据策略网络探索哪个位置同时具备高潜在价值和高可能性,进而决定最佳落子位置。在分配的搜索时间结束时,模拟过程中被系统最频繁考察的位置将成为 AlphaGo的最终选择。

在经过先期的全盘探索和过程中对最佳落子的不断揣摩后,AlphaGo的搜索算法就能在其计算能力之上加入近似人类的直觉判断。

David Silver总结:策略网络减少宽度,价值网络减少深度。AlphaGo做出多种模拟,不断反复,最终形成判断哪种方案是获胜概率最高的。

今年的AlphaGo和去年的AlphaGo有什么区别?

David Silver透露,去年的AlphaGo Lee在云上有50TPUs在运作,搜索50个棋步为10000个位置/秒。

而今年的AlphaGo Master是在单个TPU机器上进行游戏,它已经成为了自己的老师,从自己的搜索里学习,拥有更强大的策略网络和价值网络。

AlphaGo如何进行自我学习?

Demis Hassabis将AlphaGo归类为强人工智能,强人工智能和弱人工智能的区别在于弱人工智能是预设置的,例如IBM的“深蓝”就不能自我学习。

他提到强化学习框架的概念:智能体有一个特定目标要完成,它有两种方式和环境打交道,一是观察,智能体通过观察进行见面,这有可能不全面。二是行动。

David Silver称,AlphaGo先自己与自己对弈,策略网络以P预测AlphaGo的移动。

人工智能的元解决方案

Demis Hassabis表示,目前信息过载和系统冗杂是人类面临的巨大挑战。开发人工智能技术可能是这些问题的元解决方案。元解决方案的目标是实现“人工智能科学家”或“人工智能辅助科学”。

“人工智能和所有强大的新技术一样,在伦理和责任的约束中造福人类。

来源:腾讯网

本文分享自微信公众号 - 灯塔大数据(DTbigdata)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-05-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 【评论】卖掉波士顿动力,谷歌 AI 帝国不需要一个机器人军队

    【新智元导读】 从收购波士顿动力那年开始,谷歌已经逐渐证明,它并不需要打造一个“机器人管家”或者“机器人军队”,来为未来在人工智能上的统治地位打下基础。 谷歌最...

    新智元
  • 机器的意识可以量化吗?冯诺依曼体系无法诞生超级智能

    【新智元导读】本文作者是艾伦脑科学研究所所长兼首席科学官,他从计算主义和整合信息论的两种观点出发,探讨了“机器是否拥有意识”这个长期争论的话题,以及如何界定和计...

    新智元
  • 在云端开展深度学习正逢其时

    如今,机器学习仍然很流行,而其子集深度学习可能会为企业带来更多的价值。 ? 云计算技术盛会AWS re:Invent 2017即将开幕,人们开始预测AWS公司...

    静一
  • 【Goldberg回应LeCun】DL社群缺乏学习,夸大研究成果

    【新智元导读】Yann LeCun 对于 Yoav Goldberg 的驳斥得到了 Goldberg 第一时间的回应。他表示自己并不反对在语言任务上使用深度学习...

    新智元
  • AI时代市场营销生存指南:8大应用方向,无限搜索与超级个性化

    【新智元导读】AI 已经成为营销技术(MarTech)中最受关注和期待的部分。利用 AI 技术,营销人员将加快实现一对一营销活动的自动化,不仅使营销内容更有针对...

    新智元
  • 【AI+娱乐】一图看懂爱奇艺大脑增强版,智能视频峰会有AI更有爱

    【新智元导读】 爱奇艺世界·大会智能视频高峰论坛。爱奇艺CTO汤兴带来爱奇艺AI布局的全新解读:爱奇艺大脑走向增强版。北京电影学院未来影像高精尖创新中心首席科学...

    新智元
  • 【最强笔记】12张图理解Keras等8个深度学习库(下载)

    【新智元导读】对初学者来说,机器学习和深度学习相当难懂,深度学习库也难以理解。本文作者汇总了从不同来源收集的机器学习相关备忘材料,按不同的库或工具包分类,做成“...

    新智元
  • 吴恩达又一个新项目曝光!募资1.5亿美元,要做AI风投

    李林 编译自 TechCrunch 量子位 报道 | 公众号 QbitAI ? 我们都知道,吴恩达刚刚推出了一系列深度学习课程。不过也别忘了,他在宣布deepl...

    量子位
  • 比男友更了解你的穿搭喜好,这个模型可以陪你挑衣服 | 论文

    安妮 编译自 arXiv 量子位 出品 | 公众号 QbitAI 购物网站总想通过推荐系统让你多买几件衣服。 但穿搭可是个不太好把控的东西,复杂的服装风格不仅让...

    量子位
  • 【香橼做空英伟达】一年半股价624%增长,AI神话还是虚假繁荣

    【新智元导读】正值美股科技公司估计集体大跌之际,6月9日,著名做空机构香橼再发报告看衰英伟达,称其股价将跌回130美元。当天,英伟达大跌6.5%,一天之内市值蒸...

    新智元

扫码关注云+社区

领取腾讯云代金券