前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >一个小例子完美解释Naive Bayes(朴素贝叶斯)分类器

一个小例子完美解释Naive Bayes(朴素贝叶斯)分类器

作者头像
小莹莹
发布2018-04-24 10:12:43
1.8K0
发布2018-04-24 10:12:43
举报

摘要: Naive Bayes分类器的解释有很多,但是基于一个小例子来解释的不多,本文就是基于一个简单通俗易懂的小例子来解释Naive Bayes分类器。

最简单的解决方案通常是最强大的解决方案,而朴素贝叶斯就是一个很好的证明。尽管机器学习在过去几年取得了巨大的进步,但朴素贝叶斯已被证明不仅简单,而且快速、准确、可靠。它已经成功地用于许多项目中,而且它对自然语言处理(NLP)的问题的解决提供了很大的帮助。

朴素贝叶斯是利用概率论和贝叶斯定理预测样本类别(如新闻或客户评论)的概率算法。它们是概率性的,这意味着它们计算给定样本的每个类别的概率,然后输出概率最高的样本类别。他们获得这些概率的方式是使用贝叶斯定理,它基于可能与该特征相关的条件的先前数据来描述特征的概率。

我们将使用一种称为多项式朴素贝叶斯的算法。我们将以一个例子的方式介绍应用于NLP的算法,所以最终不仅你会知道这个方法是如何工作的,而且还会知道为什么它可以工作。我们将使用一些先进的技术,使朴素贝叶斯与更复杂的机器学习算法(如SVM和神经网络)可以相提并论。

一个简单的例子

让我们看一下这个例子在实践中如何运作。假设我们正在建立一个分类器,说明文本是否涉及体育运动。我们的训练集有5句话:

Text

Category

A great game(一个伟大的比赛)

Sports(体育运动)

The election was over(选举结束)

Not sports(不是体育运动)

Very clean match(没内幕的比赛)

Sports(体育运动)

A clean but forgettable game(一场难以忘记的比赛)

Sports(体育运动)

It was a close election(这是一场势均力敌的选举)

Not sports(不是体育运动)

由于朴素贝叶斯贝叶斯是一个概率分类器,我们想要计算句子“A very close game” 是体育运动的概率以及它不是体育运动的概率。在数学上,我们想要的是P(Sports | a very close game)这个句子的类别是体育运动的概率。

但是我们如何计算这些概率呢?

特征工程

创建机器学习模型时,我们需要做的第一件事就是决定使用什么作为特征。例如,如果我们对健康进行分类,特征可能就是是一个人的身高,体重,性别等等。我们会排除对模型无用的东西,如人的名字或喜爱的颜色。

在这种情况下,我们甚至没有数字特征。我们只有文字。我们需要以某种方式将此文本转换成可以进行计算的数字。

那么我们该怎么办?一般都是使用字频。也就是说,我们忽略了词序和句子的构造,把每一个文件作为单词库来处理。我们的特征将是这些词的计数。尽管它似乎过于简单化,但它的效果令人惊讶。

贝叶斯定理

贝叶斯定理在使用条件概率(如我们在这里做)时很有用,因为它为我们提供了一种方法来扭转它们:P(A|B)=P(B|A)×P(A)/P(B)。在我们这种情况下,我们有P(sports | a very close game),所以使用这个定理我们可以逆转条件概率:

因为对于我们的分类器,我们只是试图找出哪个类别有更大的概率,我们可以舍弃除数,只是比较

这样就更好理解了,因为我们可以实际计算这些概率!只要计算句子 A very close game多少次出现在 Sports”的训练集中,将其除以总数,就可以获得P(a very close game | Sports)。

有一个问题,但是我们的训练集中并没有出现“A very close game”,所以这个概率是零。除非我们要分类的每个句子都出现在我们的训练集中,否则模型不会很有用。

Being Naive

我们假设一个句子中的每个单词都与其他单词无关。这意味着我们不再看整个句子,而是单个单词。我们把P(A very close game)写成:P(a very close game)=P(a)×P(very)×P(close)×P(game) 这个假设非常强大,但是非常有用。这使得整个模型能够很好地处理可能被错误标签的少量数据或数据。下一步将它应用到我们以前所说的:

P(a very close game|Sports)=P(a|Sports)×P(very|Sports)×P(close|Sports)×P(game|Sports)

现在,我们所有的这些单词在我们的训练集中实际出现了好几次,我们可以计算出来!

计算概率

计算概率的过程其实只是在我们的训练集中计数的过程。

首先,我们计算每个类别的先验概率:对于训练集中的给定句子, P(体育运动)的概率为⅗。然后,P(非体育运动)是⅖。然后,在计算P(game | Sports)就是“game”有多少次出现在sports的样品,然后除以sports的总数(11)。因此,P(game|Sports)=2/11。

但是,我们遇到了一个问题:“close”不会出现在任何sports样本中!那就是说P(close | Sports)= 0。这是相当不方便的,因为我们将把它与其他概率相乘,所以我们最终会得到P(a|Sports)×P(very|Sports)×0×P(game|Sports)等于0。这样做的事情根本不会给我们任何信息,所以我们必须找到一个办法。

我们该怎么做呢?通过使用一种被称为拉普拉斯平滑的方法:我们为每个计数添加1,所以它不会为零。为了平衡这一点,我们将可能的词数加到除数,因此这部分将永远不会大于1。在我们的案例中,可能的话是 [ “a” ,“great” ,“very” ,“over” ,'it' ,'but' ,'game' ,'election' ,'close' ,'clean' ,'the' ,'was' ,'forgettable' ,'match' ] 。

由于可能的单词数是14,应用拉普拉斯平滑我们得到了。全部结果如下:

现在我们只是将所有的概率加倍,看看谁更大:

完美!我们的分类器给出了“A very close game” 是Sport类。

先进的技术

改进这个基本模型可以做很多事情。以下这些技术可以使朴素贝叶斯与更先进的方法效果相当。

  • Removing stopwords(删除停用词)。这些常用的词,不会真正地添加任何分类,例如,一个,有能力,还有其他,永远等等。所以为了我们的目的,选举结束将是选举,一个非常接近的比赛将是非常接近的比赛。
  • Lemmatizing words(单词变体还原)。这是将不同的词汇组合在一起的。所以选举,大选,被选举等将被分组在一起,算作同一个词的更多出现。
  • Using n-grams (使用实例)。我们可以计算一些常用的实例,如“没有内幕的比赛”和“势均力敌的选举”。而不只是一个字,一个字的进行计算。
  • 使用TF-IDF。而不是只是计数频率,我们可以做更高级的事情

END.

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-07-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PPV课数据科学社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档