资源 |《解析卷积神经网络—深度学习实践手册》

《解析卷积神经网络—深度学习实践手册》是南京大学计算机系机器学习与数据挖掘所(LAMDA)博士生魏秀参最近开放的一本CNN入门电子书,本书从实用角度着重解析了深度学习中的一类神经网络模型——卷积神经网络,向读者剖析了卷积神经网络的基本部件与工作机理,是一本面向中文读者轻量级、偏实用的深度学习工具书。

魏秀参,南京大学计算机系机器学习与数据挖掘所(LAMDA)博士生,研究方向为计算机视觉和机器学习。曾在国际顶级期刊和会议发表多篇学术论文,并两次获得国际计算机视觉相关竞赛冠亚军。 个人主页:http://lamda.nju.edu.cn/weixs/

电子书下载地址

1.http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf

2.https://pan.baidu.com/s/1pLcaFij

3.https://drive.google.com/file/d/1sa1aSzYrNtGzXbegL02JtbYw3z3ZE13m/view?usp=sharing

想了解这本书,请见文末目录,或者点击“阅读原文”查看本书

前言

人工智能,一个令人熟悉但却始终倍感陌生的词汇。让人熟悉的是科幻作家艾萨克·阿西莫夫笔下的《机械公敌》和《机器管家》,令人陌生的却是到底如何让现有的机器人咿呀学语邯郸学步;让人熟悉的是计算机科学与人工智能之父图灵设想的“图灵测试”,令人陌生的却是如何使如此的高级智能在现实生活中不再子虚乌有;让人熟悉的是2016年初阿尔法狗与李世石的五番棋对决,令人陌生的却是阿尔法狗究竟如何打通了“任督二脉”……不可否认,人工智能就是人类为了满足自身强大好奇心而脑洞大开的产物,现在提及人工智能,就不得不提阿尔法狗,提起阿尔法狗就又不得不提到深度学习。深度学习究竟为何物?

本书从实用角度着重解析了深度学习中的一类神经网络模型——卷积神经网络,向读者剖析了卷积神经网络的基本部件与工作机理,更重要的是系统性的介绍了深度卷积神经网络在实践应用方面的细节配置与工程经验。笔者希望本书“小而精”,避免像某些国外相关书籍一样浅尝辄止的“大而空”。

写作本书的主因源自笔者曾于2015年10月在个人主页上开放的一个英文深度学习学习资料“深度神经网络之必会技巧”(Must Know Tips/Tricks in Deep Neural Networks)。该资料随后被转帖至新浪微博,颇受学术界和工业界朋友好评,至今已有逾31万的阅读量,后又被国际知名论坛KDnuggets和Data Science Central特邀转载。期间曾接收到不少国内外读过此学习资料的朋友微博私信或邮件来信表示感谢,其中不乏有人提到希望开放一个中文版本以方便国人阅读学习。另一方面,随着深度学习领域发展的日新月异,当时总结整理的学习资料现在看来已略显滞后,一些最新研究成果并未涵盖其中,同时加上国内至今尚无一本侧重实践的深度学习方面的中文书籍。因此,笔者笔耕不辍,希望将自己些许的所知所得所感及所悟汇总于本书中,分享给大家供学习和查阅。

这是一本面向中文读者轻量级、偏实用的深度学习工具书。

本书内容侧重深度卷积神经网络的基础知识和实践应用。为了使更多不同技术背景的读者通过本书对卷积神经网络和深度学习有所了解,笔者试图尽可能少的使用晦涩的数学公式而尽可能多的使用具体的图表形象表达。本书的受众为对卷积神经网络和深度学习感兴趣的入门者,以及没有机器学习背景但希望能快速掌握该方面知识并将其应用于实际问题的各行从业者。为方便读者,本书附录给出了一些相关数学基础知识简介。

全书共14章,除“绪论”外可分为2个篇章:第一篇“基础理论篇”包括第1~4章,介绍卷积神经网络的基础知识、基本部件、经典结构和模型压缩等基础理论内容;第二篇“实践应用篇”包括第5~14章,介绍深度卷积神经网络自数据准备始,到模型参数初始化、不同网络部件的选择、网络配置、网络模型训练、不平衡数据处理,最终直到模型集成等实践应用技巧和经验。另外,本书基本在每章结束均有对应小结,读者在阅读完每章内容后不妨掩卷回忆,看是否完全掌握此章节重点。对卷积神经网络和深度学习感兴趣的读者可通读全书,做到“理论结合实践”;对于希望将深度卷积神经网络迅速应用来解决实际问题的读者,也可直接参考第二篇的有关内容,做到“有的放矢”。

目录

原文发布于微信公众号 - AI科技大本营(rgznai100)

原文发表时间:2017-12-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

AI角 | 吴恩达李飞飞西瓜书课程学习打卡开启,追随superstar,搞定AI核心知识!

22230
来自专栏机器之心

学界 | AAAI 2018获奖论文提前揭晓:两大奖项花落阿尔伯塔、牛津

33040
来自专栏大数据文摘

日本科学家的AI读心术,解码脑电波,还原人眼所见

12920
来自专栏新智元

【Nature 封面论文】机器学习掀起材料革命,人工智能或将颠覆人类科研方式

【新智元导读】昨日Nature封面论文:哈佛大学研究者借助机器学习算法,利用“废弃”数据成功预测新材料的合成,引发学界激论:人工智能真能加速发现神奇新材料吗?该...

51060
来自专栏大数据文摘

牛!谷歌向量空间法:图片译成文字

40080
来自专栏UAI人工智能

强化学习Reinforcement Learning被MIT Technology Review列入 2017 年十大技术

16930
来自专栏机器人网

中科院发布寒武纪深度神经网络处理器是什么?

第三届世界互联网大会于2016年11月16日在浙江乌镇召开,并举办了领先科技成果发布会。其中中国最引人注目的就是中国科学院计算技术研究所发布了寒武纪深度神经网络...

320100
来自专栏人工智能快报

英特尔研究员展望人工智能与高性能计算的融合

2017年7月31日,高性能计算领域专业媒体HPCwire发表文章,介绍了英特尔研究人员对人工智能与高性能计算结合的技术展望。 将适应于特定问题的深层神经网络扩...

37170
来自专栏玉树芝兰

如何有效沟通你的机器学习结果?

他说,许多人跑模型,跑出来一个比别人都高的准确率,于是就觉得任务完成了。他自己做健康信息研究,通过各种特征判定病人是否需要住院治疗。很容易就可以构建一个模型,获...

10350
来自专栏量子位

卸载美图秀秀吧,谷歌和MIT用机器学习帮你在拍照前修图

安妮 编译自 The Verge 量子位出品 | 公众号 QbitAI 你去票圈发照片的时候肯定也先修修图。少则几秒加个滤镜,多则数十分钟精修一下美美颜。 以后...

35960

扫码关注云+社区

领取腾讯云代金券