【世界读书日】2018版十大引用数最高的深度学习论文集合

在过去的几年里,深度学习是机器学习和统计学习交叉领域的一个子集,强大的开源工具以及大数据的热潮让其取得了令人惊讶的进展。 本文根据微软学术的引用量作为评价指标,从中选取了10篇引用量最高的论文。希望在今天的读书日,能够给大家带来一份学习的干货。

Deep Learning, by Yann L., Yoshua B. & Geoffrey H. (2015) 引用次数:5716

Deep learning enables computational models that are composed of multiple processing layers to learn with multiple levels of abstraction, the representations of data. These methods have resulted in the improvement of the state-of-the-art in object detection, speech recognition, visual object recognition, and many other domains such as drug discovery and genomics dramatically.

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, by Martín A., Ashish A. B., Eugene B. C., et al. (2015) 引用次数:2423

The system is flexible and can be used to express a variety of algorithms, that includes deep neural network models training as well as inference algorithms, and it has been used for conducting research and for the deployment of machine learning systems into production across more than a dozen areas of computer science and other fields, including the retrieval of information, speech recognition, robotics, computer vision, geographic information extraction, natural language processing, and computational drug discovery.

TensorFlow: a system for large-scale machine learning, by Martín A., Paul B., Jianmin C., Zhifeng C., Andy D. et al. (2016) 引用次数:2227

TensorFlow, an open-source project with its main focus on training and inference on deep neural networks. supports a variety of applications. Many services of Google in production make the use of TensorFlow and over time it has become widely used for research in the field of machine learning.

Deep learning in neural networks, by Juergen Schmidhuber (2015) 引用次数:2196

This historical survey has a compact summarization of relevant work, much of it from the previous millennium. Shallow as well as deep learners by the depth of their credit assignment paths are distinguished which are chains of possibly learnable, causal links between actions and effects.

Human-level control through deep reinforcement learning, by Volodymyr M., Koray K., David S., Andrei A. R., Joel V et al (2015) 引用次数:2086

Here in order to develop a novel artificial agent, termed a deep Q-network, we make the use of recent advances in training deep neural networks that using end-to-end reinforcement learning can learn successful policies directly from high-dimensional sensory inputs. This agent was tested on the challenging domain of classic Atari 2600 games.

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, by Shaoqing R., Kaiming H., Ross B. G. & Jian S. (2015) 引用次数:1421

In this work, you are introduced to a Region Proposal Network (RPN) that shares with the detection network, full-image Convolutional features, thus enabling nearly cost-free region proposals. A Region Proposal Network is a fully Convolutional network that at each position simultaneously predicts object bounds and objectness scores.

Long-term recurrent convolutional networks for visual recognition and description, by Jeff D., Lisa Anne H., Sergio G., Marcus R., Subhashini V. et al. (2015) 引用次数:1285

In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent Convolutional models are “doubly deep” in that they can be compositional in spatial and temporal “layers”.

MatConvNet: Convolutional Neural Networks for MATLAB, by Andrea Vedaldi & Karel Lenc (2015) 引用次数:1148

It as easy-to-use MATLAB functions exposes the building blocks of CNN's, providing routines for computing linear convolutions with filter banks, feature pooling, and many more. This document provides a great overview of Convolutional Neural Networks and how they have their implementation in MatConvNet and further also gives in the toolbox of each computational block the technical details of the same.

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, by Alec R., Luke M. & Soumith C. (2015) 引用次数:1054

In this work, the main focus is to help bridge the gap between the success of CNN's for supervised learning and unsupervised learning. Here, you are introduced to a class of CNN's called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning.

U-Net: Convolutional Networks for Biomedical Image Segmentation, by Olaf R., Philipp F. &Thomas B. (2015) 引用次数:975

There is large consent that successful training of deep networks has a requirement of many annotated training samples. In this paper, you are presented a strategy in network and training that in order to more efficiently use the available annotated samples solely relies on the strong use of data augmentation.

原文发布于微信公众号 - 量化投资与机器学习(ZXL_LHTZ_JQXX)

原文发表时间:2018-04-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

收藏 | 机器学习、NLP、Python和Math最好的150余个教程

? 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有...

2305
来自专栏人工智能LeadAI

TF使用例子-LSTM实现序列标注

本文主要改写了一下"Sequence Tagging with Tensorflow"(https://link.jianshu.com?t=https://g...

7268
来自专栏一心无二用,本人只专注于基础图像算法的实现与优化。

图像增强系列之图像自动去暗角算法。

  暗角图像是一种在现实中较为常见的图像,其主要特征就是在图像四个角有较为显著的亮度下降,比如下面两幅图。根据其形成的成因,主要有3种:natural vign...

5239
来自专栏大数据挖掘DT机器学习

R语言与机器学习(分类算法)决策树算法

决策树定义 首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。 ? 观察上图,我们判决鸢尾花的思考过程可以这么...

5024
来自专栏专知

深度学习文本分类方法综述(代码)

【导读】本文是数据科学家Ahmed BESBES的一篇博文,主要内容是探索不同NLP模型在文本分类的性能,围绕着文本分类任务,构建当前主流的七种不同模型:用词n...

1.1K3
来自专栏AI科技大本营的专栏

资源 | 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)

编辑 | MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好...

3396
来自专栏大数据挖掘DT机器学习

深度学习word2vec笔记(算法篇)

一. CBOW加层次的网络结构与使用说明 Word2vec总共有两种类型,每种类型有两个策略,总共4种。这里先说最常用的一种。这种的网络结构如下图。 ? 其中第...

4194
来自专栏量化投资与机器学习

【Python机器学习】系列之特征提取与处理篇(深度详细附源码)

第1章 机器学习基础 将机器学习定义成一种通过学习经验改善工作效果的程序研究与设计过程。其他章节都以这个定义为基础,后面每一章里介绍的机器学习模型都是按照这个...

1.3K7
来自专栏Coding迪斯尼

用深度学习实现自然语言处理:word embedding,单词向量化

前几年,腾讯新闻曾发出一片具有爆炸性的文章。并不是文章的内容有什么新奇之处,而是文章的作者与众不同,写文章的不是人,而是网络机器人,或者说是人工智能,是算法通过...

1031
来自专栏专知

【2018最新版】 200个最好的与机器学习、自然语言处理相关教程

【导读】近年来,机器学习等新最新技术层出不穷,如何跟踪最新的热点以及最新资源,作者Robbie Allen列出了一系列相关资源教程列表,包含四个主题:机器学习,...

1340

扫码关注云+社区

领取腾讯云代金券