如何成长为顶级数据分析师和数据挖掘师?

#玩转大数据#新的一年应该拥有新的开端以及新的计划目标,也标志着新的希望。一个数据科学家在年尾做了一个如何成长为顶级数据分析师和数据挖掘师的计划。根据发展阶段的不同,我在此给大家分享一些每个数据科学家都应该做的新年计划。可能这个计划会相对宽泛,大家可以根据自己的需求去调整和补充。

一名数据科学家的新年计划

根据数据科学家一生的三个发展阶段,我将这些计划做了分类。大家可以自己判断哪些计划适合自己并按照计划行动起来。如果你已经成功地完成了现有阶段的任务,就可以转向下一阶段。我还列出了现有的有关该主题的最佳课程。

初级水平

什么是初学者?——如果解析学和数据科学对你来说是全新的领域,你也不知该行业的发展模式,而你又想在这个行业大展拳脚一番,那么初学者就是你。以下这些应该在你的计划之内。

1. R语言也好,Python语言也好,学习一门新的编程语言

我曾见到有同学同时学习R语言和Python语言,最后落得两手空空。这种做法是很致命的。你一定要沉下心来专攻一门。鉴于这两种语言都是开放源代码工具,所以在公司里都有广泛运用。Python被公认为最简单的编程语言,而R语言一直都是最受青睐的统计工具。学习哪一门的决定权在你,因为两个同等出色。

推荐课程:学习Codecademy上的Python语言课程;学习DataCamp上的R语言课程。

PS:推荐R语言和Python入门课程《Python入门:数据挖掘实战》、《R语言入门》

2. 学习统计学和数学

统计学的内容全都是关于假设和数列,然而没有统计学和数学的知识你很难深入到数据行业里,这是数据科学家的重中之重。如果你不擅长数学,那现在是时候走出困境了。面对深奥的统计、几何和概率领域知识时,一定不要惊慌。可汗学院(Khan Academy)、Udacity等站点上都有很多优质的统计学课程。下载APP,现在就能开始学习!

推荐课程:Udacity上的推论统计学和描述统计学课程;可汗学院(Khan Academy)上的几何课程。

3.一次性完成一门网络开放课程(最难执行)

大规模网络开放课程可以免费获取和学习,可这对你来说也是最难实现的诺言。很多学生通常一次性注册选修很多课程,结果一门也没有圆满完成。所以,你一定要一次专注一门课,完成之后再选下一门。你也可以在Coursera,edX和 Udacit上查找任何想要的学习课程。

推荐课程:例如学习Coursera上的数据科学专业化(R语言)课程;学习Dataquest上的数据科学Python语言课程。

PS:推荐R语言和python进阶课程:《R语言实战》、《Python进阶:数据挖掘算法》

4. 了解业界动态,善于探索和发现

你要了解业内动态。我们生活在一个变化的世界,一夜之间事物就可能发生重大变化,今日和流行的技术明日就很可能面临淘汰。你一定要多与一些富有经验的专业人士、业内专家交流,预见未来的自己。所以赶快参与到讨论和聚会中来吧,关注一些微博微信,加入一些群组,多阅读一些书籍。

推荐书籍:大数据相关电子书集

中级水平

中级水平的数据科学家是什么样的?——如果你已经完成了前一阶段的内容,有过机器学习基础知识的实践经验,掌握了建立预测模型的知识,那你就达到了中级水平。完成这一阶段需要强大的决心和持久的练习。你准备好迎接这个挑战了吗?

1.理解并构建你的机器学习技能

机器学习是数据科学和技术的未来。所有的大型企业都不惜重金雇用掌握这个技能的人才。毫无疑问,近日来这项技术的需求越来越大,现在正是你充分利用这一局面的大好时机。今年,你应该努力在机器学习上精益求精,深入掌握回归、聚类和分类与回归树(CART)技能。Andrew Ng上你可以找到关于机器学习的免费资源。

推荐课程:在Andrew Ng完成机器学习课程任务。

PS:推荐课程《机器学习与R语言实践》,斯坦福大学公开课《机器学习》

2. 专注集成算法和Boosting算法

一旦你对机器学习充满自信,那就继续去学习其他模型。通过Boosting和集成算法,你的模型准确率与其他算法相比会突飞猛进。上述免费资源里也包含这一主题。不过一定要让自己做好心理准备,拿下这个主题需要超强的理解力。

推荐课程:阅读Kaggle Ensembling Guide。学习MIT LectureBoosting相关课程。推荐费博士的《Python进阶:数据挖掘算法》视频课程

3. 探索Spark、NoSQL和其他大数据工具

今年你的学习之旅始于大数据。考虑到大数据专业人员的需求激增,你一定要学习Spark,这个工具最近非常火爆。大数据的未来就在Spark,它广泛用于处理和操纵数据。除此之外,你还可以拓展到NoSQL和Hadoop领域来。

推荐课程:从Spark迈出学习第一步。推荐观看课程《大数据实战工具Spark》

4.给社区成员做分享

还有什么比分享知识更美妙呢!从今年开始,你可以把自己的知识分享给正在数据科学的路上不断探索的人们。你可以加入活跃的数据科学论坛,给他们答疑解惑,以你的灵招妙计给他们做培训。你也可以在附近的行业圈里发起聚会。

推荐任务:关注大数据公众号和论坛等等。

5.参加数据科学竞赛

是时候检验你的真才实学了。今年你一定要参加一些竞赛。这些竞赛会引导你去关注自己的弱势领域。此外,你也会因已有的学识而信心倍增。我希望你可以荣登Kaggle500强数据科学家之列。而现在,你的目标就是坚持到底。

推荐任务:加入Kaggle。加入Data Hack。DataCastle。天池大赛。

附言:有时竞赛也会有难度。你也可以通过这些实际的问题来检验你的技能和知识。这些问题不难,并且妙趣横生。

高级水平

对于进入这个阶段的人我就不需要来给出标准了,你们所了解的数据科学,很多人甚至连尝试的勇气都没有。身处这一阶段,你们的生活惬意而又自如。可有时还想去迎接挑战,以下是一些计划。

1. 建立深度学习模式

今年,你们要为有志于成为数据科学家的人们树立榜样。你要下决心在今年建立深度学习的模式。全球的人都在用这一模式进行预测,它是机器学习的高级阶段,其准确率明显高于普通的机器学习模型。

推荐课程:完成深度学习辅导课程任务。

2.回馈

我相信知识的意义不是被束之高阁,而是与人分享。分享越多,收获越大。据说,如果你了解一个新概念并解释给你的两个朋友,你对这个概念的记忆很可能会更久。所以今年,你必须制定计划,运用自己的知识和经验帮助数据分析学领域的人。这也会为更多的在这个领域的人指明方向。

推荐任务:在社区分享你的知识。

3. 探索强化学习

强化学习是机器学习中最有效而又鲜有发现的领域。今年,你可以下定决心研究下这个领域。虽然很有挑战性,但是一定值得你去尝试。无人汽车、无人侦察机就是强化学习的硕果。一旦开始学习这些,你就自然而言地进入到了人工智能领域。

文章来源:数据科学(微信公众号DataScientists)

原文发布于微信公众号 - 数据的力量(shujudeliliang)

原文发表时间:2016-04-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏腾讯云安全的专栏

他们如何做大数据、人工智能 | RSA 进阶篇

1603
来自专栏企鹅号快讯

量子计算结合机器学习,即便是在初始阶段也极具前景

虽说爱因斯坦曾经拒绝量子力学,说上帝不会掷骰子,但有些投资人及公司都迫切希望,上帝就是靠掷骰子的。 Alexa 和 Siri 可以理解你在说什么,自动驾驶汽车穿...

2209
来自专栏人工智能头条

教授机器视物和理解:Facebook人工智能研究进展及规划

1323
来自专栏量子位

提到强化学习只知道AlphaGo?其实,RL在工业界还有这些应用

原作 Ben Lorica 唐旭 编译自 Oreilly 量子位 出品 | 公众号 QbitAI 关于作者: Ben Lorica,O’Reilly Media...

2573
来自专栏PaddlePaddle

技术|深度学习行业应用及就业方向大猜想

一直以来,大家都在盛传深度学习是工程师的风口,但是对于深度学习和行业的联系却很少被提及。

1021
来自专栏人工智能

CCCF 微软沈向洋:理解自然语言:表述、对话和意境

来源:《中国计算机学会通讯》2017年第12期《CNCC2017特邀报告》 微软全球执行副总裁沈向洋博士在2017年10月25日在福州举行的中国计算机大会(CN...

2105
来自专栏AI研习社

Github 项目推荐 | 阿里开源自主研发的 DFSMN 语音识别模型,引谷歌论文引用

近日,阿里巴巴达摩院机器智能实验室语音识别团队,推出了新一代语音识别模型—— DFSMN,不仅被谷歌等国外巨头在论文中重点引用,更将全球语音识别准确率纪录提高至...

1092
来自专栏CSDN技术头条

教授机器视物和理解——Facebook人工智能研究进展

许多人认为Facebook只是一个蓝色图标的大型应用,或者认为只是个网站,但是近年来,我们已经建立了一套应用和服务体系,为用户之间相互交流和分享提供了广泛的方式...

1909
来自专栏新智元

《AI寒冬将至》作者:人工智能存在十大问题

【新智元导读】不久前,一篇题为《AI寒冬将至》的文章火了,引发AI领域专家学者、研究人员、学生甚至吃瓜群众的大量讨论。该文对有关深度学习的炒作提出批评,认为深度...

530
来自专栏新智元

【重磅】DeepMind 开源其 AI 核心平台 DeepMind Lab(附论文)

【新智元导读】 昨天,OpenAI 刚刚宣布开源其用于测试和训练人工智能通用能力的平台Universe,DeepMind也在官方博客上宣布将其AI 核心平台 D...

3466

扫码关注云+社区