专栏首页目标检测和深度学习深度学习图像标注工具

深度学习图像标注工具

对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的工作,下面介绍几个图像标注工具:

▌Labelme

Labelme适用于图像分割任务的数据集制作:

项目地址:https://github.com/wkentaro/labelme

该软件实现了最基本的分割数据标注工作,在save后将保持Object的一些信息到一个json文件中,如下:

https://github.com/wkentaro/labelme/blob/master/static/apc2016_obj3.json

同时该软件提供了将json文件转化为labelimage的功能:

▌labelImg

Labelmg适用于图像检测任务的数据集制作:

它来自下面的项目:

https://github.com/tzutalin/labelImg

其中标签存储功能和“Next Image”、“Prev Image”的设计使用起来比较方便。

该软件最后保存的xml文件格式和ImageNet数据集是一样的。

▌yolo_mark

yolo_mark适用于图像检测任务的数据集制作:

它来自于下面的项目:

https://github.com/AlexeyAB/Yolo_mark

它是yolo2的团队开源的一个图像标注工具,为了方便其他人使用yolo2训练自己的任务模型。在linux和win下都可运行,依赖opencv库。

▌Vatic

Vatic适用于图像检测任务的数据集制作:

它来自下面的项目:

http://carlvondrick.com/vatic/

比较特别的是,它可以做视频的标注,比如一个25fps的视频,只需要隔100帧左右手动标注一下物体的位置,最后在整个视频中就能有比较好的效果。这依赖于软件集成的opencv的追踪算法。

▌Sloth

Sloth适用于图像检测任务的数据集制作:

它来自下面的项目:

https://github.com/cvhciKIT/sloth

https://cvhci.anthropomatik.kit.edu/~baeuml/projects/a-universal-labeling-tool-for-computer-vision-sloth/

在标注label的时候,该软件可以存储标签,并呈现标注过的图片中的bbox列表。

▌Annotorious

Annotorious适用于图像检测任务的数据集制作:

它来自下面的项目:

http://annotorious.github.io/index.html

代码写的相当规范,提供了相应的API接口,方便直接修改和调用。

▌RectLabel

RectLabel适用于图像检测任务的数据集制作:

它来自下面的项目:

https://rectlabel.com/

这是一个适用于Mac OS X的软件,而且可以在apple app store中直接下载。

▌VoTT

VoTT适用于图像检测任务的数据集制作:

它来自下面的项目:

https://github.com/Microsoft/VoTT/

微软的开源工具,既可以标注视频,也可以标注图片,而且支持已有模型的集成,功能强大。

▌IAT – Image Annotation Tool

IAT适用于图像分割任务的数据集制作:

它来自下面的项目:

http://www.ivl.disco.unimib.it/activities/imgann/

比较有特色的是,它支持一些基础形状的选择,比如要分割的物体是个圆形的,那么分割时可以直接选择圆形,而不是用多边形选点。

▌images_annotation_programme

images_annotation_programme适用于图像检测任务的数据集制作:

它来自下面的项目:

https://github.com/frederictost/images_annotation_programme

除此之外,还有很多类似的工具,与上面的工具相比,并没有什么特色了,我们只给出链接,不详细介绍了:

▌ImageNet-Utils

https://github.com/tzutalin/ImageNet_Utils

▌labeld

https://github.com/sweppner/labeld

▌VIA

http://www.robots.ox.ac.uk/~vgg/software/via/

▌ALT

https://alpslabel.wordpress.com/2017/01/26/alt/

▌FastAnnotationTool

https://github.com/christopher5106/FastAnnotationTool

▌LERA

https://lear.inrialpes.fr/people/klaeser/software_image_annotation

本文分享自微信公众号 - 目标检测和深度学习(The_leader_of_DL_CV)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-06-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Github 平均 Star 979!一文了解 Top 10 机器学习开源项目

    朱晓霞
  • Github 项目推荐 | 用 Keras 实现的神经网络机器翻译

    本库是用 Keras 实现的神经网络机器翻译,查阅库文件请访问: https://nmt-keras.readthedocs.io/ Github 页面: ht...

    朱晓霞
  • TensorFlow实现深度学习算法的教程汇集:代码+笔记

    朱晓霞
  • 资源 | 深度学习图像标注工具汇总

    对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的...

    IT派
  • 资源 | 深度学习图像标注工具汇总

    对于监督学习算法而言,数据决定了任务的上限,而算法只是在不断逼近这个上限。世界上最遥远的距离就是我们用同一个模型,但是却有不同的任务。但是数据标注是个耗时耗力的...

    AI科技大本营
  • 资源 | 深度学习图像标注工具汇总

    用户1737318
  • 深度学习图像标注工具汇总

    版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/...

    chaibubble
  • 使用文本框TextView/EditText的清单

    在实际的开发中TextView和EditText是非常基本的控件。这两个控件的使用也是十分简单。而TextView/EditText的功能其实也是非常强大,例如...

    阳仔
  • 自动镜像你的 GitHub 仓库

    接下来的内容告诉你如何配置,让 GitHub 的 workflow 帮你定时自动同步代码到 Gitee。

    王诗翔呀
  • 二次元少女生成器、会开车的神经网络...2019年最好的17个机器学习项目!

    为了挑选出2019年最好的开源项目,最近某位Medium网友整理了2019年Reddit机器学习板块热门高赞项目资源汇总,一起来看看都有哪些项目上榜:

    数据派THU

扫码关注云+社区

领取腾讯云代金券