推荐系统遇上深度学习(六)--PNN模型理论和实践

推荐系统遇上深度学习系列:

推荐系统遇上深度学习(一)--FM模型理论和实践

推荐系统遇上深度学习(二)--FFM模型理论和实践

推荐系统遇上深度学习(三)--DeepFM模型理论和实践

推荐系统遇上深度学习(四)--多值离散特征的embedding解决方案

推荐系统遇上深度学习(五)--Deep&Cross Network模型理论和实践

1、原理

PNN,全称为Product-based Neural Network,认为在embedding输入到MLP之后学习的交叉特征表达并不充分,提出了一种product layer的思想,既基于乘法的运算来体现体征交叉的DNN网络结构,如下图:

按照论文的思路,我们也从上往下来看这个网络结构:

输出层 输出层很简单,将上一层的网络输出通过一个全链接层,经过sigmoid函数转换后映射到(0,1)的区间中,得到我们的点击率的预测值:

l2层 根据l1层的输出,经一个全链接层 ,并使用relu进行激活,得到我们l2的输出结果:

l1层 l1层的输出由如下的公式计算:

重点马上就要来了,我们可以看到在得到l1层输出时,我们输入了三部分,分别是lz,lp 和 b1,b1是我们的偏置项,这里可以先不管。lz和lp的计算就是PNN的精华所在了。我们慢慢道来

Product Layer

product思想来源于,在ctr预估中,认为特征之间的关系更多是一种and“且”的关系,而非add"加”的关系。例如,性别为男且喜欢游戏的人群,比起性别男和喜欢游戏的人群,前者的组合比后者更能体现特征交叉的意义。

product layer可以分成两个部分,一部分是线性部分lz,一部分是非线性部分lp。二者的形式如下:

在这里,我们要使用到论文中所定义的一种运算方式,其实就是矩阵的点乘啦:

我们先继续介绍网络结构,有关Product Layer的更详细的介绍,我们在下一章中介绍。

Embedding Layer

Embedding Layer跟DeepFM中相同,将每一个field的特征转换成同样长度的向量,这里用f来表示。

损失函数 使用和逻辑回归同样的损失函数,如下:

2、Product Layer详细介绍

前面提到了,product layer可以分成两个部分,一部分是线性部分lz,一部分是非线性部分lp。

看上面的公式,我们首先需要知道z和p,这都是由我们的embedding层得到的,其中z是线性信号向量,因此我们直接用embedding层得到:

论文中使用的等号加一个三角形,其实就是相等的意思,你可以认为z就是embedding层的复制。

对于p来说,这里需要一个公式进行映射:

不同的g的选择使得我们有了两种PNN的计算方法,一种叫做Inner PNN,简称IPNN,一种叫做Outer PNN,简称OPNN。

接下来,我们分别来具体介绍这两种形式的PNN模型,由于涉及到复杂度的分析,所以我们这里先定义Embedding的大小为M,field的大小为N,而lz和lp的长度为D1。

2.1 IPNN

IPNN的示意图如下:

IPNN中p的计算方式如下,即使用内积来代表pij:

所以,pij其实是一个数,得到一个pij的时间复杂度为M,p的大小为N*N,因此计算得到p的时间复杂度为N*N*M。而再由p得到lp的时间复杂度是N*N*D1。因此 对于IPNN来说,总的时间复杂度为N*N(D1+M)。文章对这一结构进行了优化,可以看到,我们的p是一个对称矩阵,因此我们的权重也可以是一个对称矩阵,对称矩阵就可以进行如下的分解:

因此:

因此:

从而得到:

可以看到,我们的权重只需要D1 * N就可以了,时间复杂度也变为了D1*M*N。

2.2 OPNN

OPNN的示意图如下:

OPNN中p的计算方式如下:

此时pij为M*M的矩阵,计算一个pij的时间复杂度为M*M,而p是N*N*M*M的矩阵,因此计算p的事件复杂度为N*N*M*M。从而计算lp的时间复杂度变为D1 * N*N*M*M。这个显然代价很高的。为了减少负责度,论文使用了叠加的思想,它重新定义了p矩阵:

这里计算p的时间复杂度变为了D1*M*(M+N)

3、代码实战

终于到了激动人心的代码实战环节了,一直想找一个实现比较好的代码,找来找去tensorflow没有什么合适的,倒是pytorch有一个不错的。没办法,只能自己来实现啦,因此本文的代码严格根据论文得到,有不对的的地方或者改进之处还望大家多多指正。

本文的github地址为: https://github.com/princewen/tensorflow_practice/tree/master/Basic-PNN-Demo.

本文的代码根据之前DeepFM的代码进行改进,我们只介绍模型的实现部分,其他数据处理的细节大家可以参考我的github上的代码.

模型输入

模型的输入主要有下面几个部分:

self.feat_index = tf.placeholder(tf.int32,
                                 shape=[None,None],
                                 name='feat_index')
self.feat_value = tf.placeholder(tf.float32,
                               shape=[None,None],
                               name='feat_value')

self.label = tf.placeholder(tf.float32,shape=[None,1],name='label')
self.dropout_keep_deep = tf.placeholder(tf.float32,shape=[None],name='dropout_deep_deep')

feat_index是特征的一个序号,主要用于通过embedding_lookup选择我们的embedding。feat_value是对应的特征值,如果是离散特征的话,就是1,如果不是离散特征的话,就保留原来的特征值。label是实际值。还定义了dropout来防止过拟合。

权重构建

权重由四部分构成,首先是embedding层的权重,然后是product层的权重,有线性信号权重,还有平方信号权重,根据IPNN和OPNN分别定义。最后是Deep Layer各层的权重以及输出层的权重。

对线性信号权重来说,大小为D1 * N * M 对平方信号权重来说,IPNN 的大小为D1 * N,OPNN为D1 * M * M。

def _initialize_weights(self):
    weights = dict()

    #embeddings
    weights['feature_embeddings'] = tf.Variable(
        tf.random_normal([self.feature_size,self.embedding_size],0.0,0.01),
        name='feature_embeddings')
    weights['feature_bias'] = tf.Variable(tf.random_normal([self.feature_size,1],0.0,1.0),name='feature_bias')


    #Product Layers
    if self.use_inner:
        weights['product-quadratic-inner'] = tf.Variable(tf.random_normal([self.deep_init_size,self.field_size],0.0,0.01))
    else:
        weights['product-quadratic-outer'] = tf.Variable(
            tf.random_normal([self.deep_init_size, self.embedding_size,self.embedding_size], 0.0, 0.01))



    weights['product-linear'] = tf.Variable(tf.random_normal([self.deep_init_size,self.field_size,self.embedding_size],0.0,0.01))
    weights['product-bias'] = tf.Variable(tf.random_normal([self.deep_init_size,],0,0,1.0))
    #deep layers
    num_layer = len(self.deep_layers)
    input_size = self.deep_init_size
    glorot = np.sqrt(2.0/(input_size + self.deep_layers[0]))

    weights['layer_0'] = tf.Variable(
        np.random.normal(loc=0,scale=glorot,size=(input_size,self.deep_layers[0])),dtype=np.float32
    )
    weights['bias_0'] = tf.Variable(
        np.random.normal(loc=0,scale=glorot,size=(1,self.deep_layers[0])),dtype=np.float32
    )


    for i in range(1,num_layer):
        glorot = np.sqrt(2.0 / (self.deep_layers[i - 1] + self.deep_layers[i]))
        weights["layer_%d" % i] = tf.Variable(
            np.random.normal(loc=0, scale=glorot, size=(self.deep_layers[i - 1], self.deep_layers[i])),
            dtype=np.float32)  # layers[i-1] * layers[i]
        weights["bias_%d" % i] = tf.Variable(
            np.random.normal(loc=0, scale=glorot, size=(1, self.deep_layers[i])),
            dtype=np.float32)  # 1 * layer[i]


    glorot = np.sqrt(2.0/(input_size + 1))
    weights['output'] = tf.Variable(np.random.normal(loc=0,scale=glorot,size=(self.deep_layers[-1],1)),dtype=np.float32)
    weights['output_bias'] = tf.Variable(tf.constant(0.01),dtype=np.float32)


    return weights

Embedding Layer 这个部分很简单啦,是根据feat_index选择对应的weights['feature_embeddings']中的embedding值,然后再与对应的feat_value相乘就可以了:

# Embeddings
self.embeddings = tf.nn.embedding_lookup(self.weights['feature_embeddings'],self.feat_index) # N * F * K
feat_value = tf.reshape(self.feat_value,shape=[-1,self.field_size,1])
self.embeddings = tf.multiply(self.embeddings,feat_value) # N * F * K

Product Layer 根据之前的介绍,我们分别计算线性信号向量,二次信号向量,以及偏置项,三者相加同时经过relu激活得到深度网络部分的输入。

# Linear Singal
linear_output = []
for i in range(self.deep_init_size):
    linear_output.append(tf.reshape(
        tf.reduce_sum(tf.multiply(self.embeddings,self.weights['product-linear'][i]),axis=[1,2]),shape=(-1,1)))# N * 1

self.lz = tf.concat(linear_output,axis=1) # N * init_deep_size

# Quardatic Singal
quadratic_output = []
if self.use_inner:
    for i in range(self.deep_init_size):
        theta = tf.multiply(self.embeddings,tf.reshape(self.weights['product-quadratic-inner'][i],(1,-1,1))) # N * F * K
        quadratic_output.append(tf.reshape(tf.norm(tf.reduce_sum(theta,axis=1),axis=1),shape=(-1,1))) # N * 1

else:
    embedding_sum = tf.reduce_sum(self.embeddings,axis=1)
    p = tf.matmul(tf.expand_dims(embedding_sum,2),tf.expand_dims(embedding_sum,1)) # N * K * K
    for i in range(self.deep_init_size):
        theta = tf.multiply(p,tf.expand_dims(self.weights['product-quadratic-outer'][i],0)) # N * K * K
        quadratic_output.append(tf.reshape(tf.reduce_sum(theta,axis=[1,2]),shape=(-1,1))) # N * 1

self.lp = tf.concat(quadratic_output,axis=1) # N * init_deep_size

self.y_deep = tf.nn.relu(tf.add(tf.add(self.lz, self.lp), self.weights['product-bias']))
self.y_deep = tf.nn.dropout(self.y_deep, self.dropout_keep_deep[0])

Deep Part 论文中的Deep Part实际上只有一层,不过我们可以随意设置,最后得到输出:

# Deep component
for i in range(0,len(self.deep_layers)):
    self.y_deep = tf.add(tf.matmul(self.y_deep,self.weights["layer_%d" %i]), self.weights["bias_%d"%i])
    self.y_deep = self.deep_layers_activation(self.y_deep)
    self.y_deep = tf.nn.dropout(self.y_deep,self.dropout_keep_deep[i+1])
self.out = tf.add(tf.matmul(self.y_deep,self.weights['output']),self.weights['output_bias'])

剩下的代码就不介绍啦! 好啦,本文只是提供一个引子,有关PNN的知识大家可以更多的进行学习呦。

参考文献 1 、https://zhuanlan.zhihu.com/p/33177517 2、https://cloud.tencent.com/developer/article/1104673?fromSource=waitui 3、https://arxiv.org/abs/1611.00144

推荐阅读:强化学习系列

实战深度强化学习DQN-理论和实践

DQN三大改进(一)-Double DQN

DQN三大改进(二)-Prioritised replay

DQN三大改进(三)-Dueling Network

深度强化学习-Policy Gradient基本实现

深度强化学习-Actor-Critic算法原理和实现

深度强化学习-DDPG算法原理和实现

对抗思想与强化学习的碰撞-SeqGAN模型原理和代码解析

原文发布于微信公众号 - 小小挖掘机(wAIsjwj)

原文发表时间:2018-04-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

如何解读决策树和随机森林的内部工作机制?

选自 Pivotal 机器之心编译 参与:Panda 随机森林在过去几年里得到了蓬勃的发展。它是一种非线性的基于树的模型,往往可以得到准确的结果。但是,随机森林...

30710
来自专栏AI科技大本营的专栏

干货 | 深度详解ResNet及其六大变体

编译 | 图普科技 本文由图普科技工程师编译自《An Overview of ResNet and its Variants》。 从AlexNet[1]在201...

4476
来自专栏Bingo的深度学习杂货店

《机器学习实战》总结篇

前些天完成了《机器学习实战》这本书的学习,也利用 Python3 实现了各个章节的代码,对传统的机器学习方法有了更进一步的了解,这里做一个总结。 代码传送门: ...

3794
来自专栏AI研习社

循环神经网络的介绍、代码及实现

该文主要目的是让大家体会循环神经网络在与前馈神经网络的不同之处。 大家貌似都叫Recurrent Neural Networks为循环神经网络。 我之前是查维基...

3648
来自专栏决胜机器学习

​ 机器学习(九) ——构建决策树(离散特征值)

机器学习(九) ——构建决策树(离散特征值) (原创内容,转载请注明来源,谢谢) 一、概述 1、概念 决策树,这个概念是一个很常见的概念,应该是机器学习中最...

3955
来自专栏专知

【干货】这8种神经网络结构,你掌握了几个?

【导读】近日,James Le撰写了一篇博文,全面阐述了神经网络中经典的八种神经网络结构。包括感知器、卷积神经网络、循环神经网络、LSTM、Hopfield网络...

3329
来自专栏统计学习方法

《统计学习方法》第八章-提升方法

在《统计学习方法》中第八章提升方法,包括四节,第一节介绍AdaBoost、第二节介绍AdaBoost的误差、第三节介绍从前向分布算法来实现AdaBoost、第四...

2016
来自专栏算法channel

TensorFlow 指标列,嵌入列

一般地,机器学习、深度学习 feed 进来的数据要求为数值型。如果某列取值为字符型,需要做数值转换,今天就来总结下 TensorFlow 中的指标列和嵌入列。

1663
来自专栏AI科技评论

深度 | Facebook翻译错误导致一名建筑工人被抓,机器翻译到底有多脆弱?

这是最近几年非常流行的一个句子,试试看能不能读懂—— “Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, i...

3345
来自专栏机器之心

CVPR 2018 | UNC&Adobe提出模块化注意力模型MAttNet,解决指示表达的理解问题

3199

扫码关注云+社区