AI教父Geoff Hinton和深度学习的40年

大数据文摘出品

坚持你所相信的,直到世界追上你的脚步。

因为伤了背,Geoff Hinton已经站着工作了12年,似乎巧合地迎合了现在“站立工作”的这股风潮。

“我领先于潮流,”Hinton说。

不仅仅是这一点,Hinton更广为人知的“领先于潮流”,是在深度学习领域。在所有人都不看好神经网络的年头,是他,将这一技术带进了主流学术界。

Bloomberg近日为这位“深度学习教父”拍摄了一段特写纪录片,用短短8分钟,讲述了这位“有点皮”的教授关于神经网络的40年传奇经历

视频内容

为什么是AI教父?

今天,混AI圈的人鲜有人没听过Geoff Hinton。他是谷歌大脑研究小组的负责人,多伦多大学的荣誉教授。而奠定了他在今天人工智能圈“教父”地位的,是他在多层神经网络技术的贡献。

Hinton对AI的贡献有多大呢?

学术点说,Hinton在1986年提出的通过反向传播来训练深度网络理论,标志着深度学习发展的一大转机,为近年来人工智能的发展奠定了基础

更实际点说,今天谷歌中通过语音识别进行图片检索、在手机上把语音转化为文字的技术的实现,大部分功劳要归于Hinton博士的研究。

他的研究,彻底改变了人工智能,乃至整个人类发展的轨迹。

从研究大脑,到尝试制作一个

Geoff Hinton出生在英国一家“书香门第”,家人多是数学家和经济学家,这样的“学霸爸妈”显然让Hinton的童年不太好过,正如他自己所说:“我大概在7岁的时候就意识到,不读博是不行了(微笑脸)。”

而最初把Hinton引上人工智能这条路的,是他对人脑的好奇

Hinton很早就沉迷于大脑如何工作的问题。于是,他开始进入生理学,解剖大脑以了解其工作方式。

不满足于此,他又开始学习心理学。最后,他决定更多地使用计算机科学的方法来模拟大脑,并进入人工智能领域,开始了他近40年的研究生涯。

“我认为,如果你真的想了解一个非常复杂的装置,比如大脑,那你就制作一个。”

坚信神经网络:“其他人都错了”

尽管现在已经成为了人工智能的主流研究方法,神经网络在最初问世时,命途多舛。

1956年,美国认知心理学家弗兰克·罗森布拉特(Frank Rosenblatt)基于神经元的理论发明了一种模拟神经元的方法。它的基本点是一个被称为神经元的小单位的集合。 这些集合都是小的计算单元,但可以模拟人脑计算的方式。和我们从感官中获取数据一样,这些神经元可以获取传入数据并进行学习,所以神经网络可以随着时间的推移做出决定。

但是,Rosenblatt的学习算法当时对于多层结构的神经网络不起作用。人工智能学者们也因此放弃了学习式软件的想法。他们转而使用逻辑来产生智能——比如下棋的能力。

几乎没人再相信神经网络的前景,也没人再研究神经网络。

除了Hinton。

“大脑是一个巨大的神经网络,因此,神经网络必须也是可以工作的,因为它在我们的大脑中起作用。”Hinton说。

“那是什么支持着你不放弃?”

“其他人都错了(everyone else is wrong)。”

离开五角大楼,成为“加拿大之光”

为了找到一个支持他研究神经网络的栖身之处,Hinton在美国辗转多地。但是,当时大部分的学术研究都是受到国防部支持。

而Hinton对于这样拿到自己的研究经费并不满意:“我不希望我的研究成果被用在一些不善意的目标上。”

的确,深度学习从诞生之日起,就与国防部的一些军事目的有着不可分割的渊源。

甚至直至今天依然如此——今年3月谷歌被曝光正参与Maven项目,向美国军方提供TensorFlow APIs和无人机图像识别技术,引起巨大争议和众多抗议,6月谷歌不得不承诺不将AI用于武器。这场声势浩大的争论甚至将战火燃到了李飞飞身上

而关于AI伦理和技术人员责任的争论也从来没有停止过。

近两年,将算法用来自动识别一起犯罪是否属于团伙犯罪,或识别一个人是否是同性恋的研究屡见不鲜,算法的缔造者是否应该在研究之外分出心力,了解自己研究背后更深的影响呢?

在40年前,Hinton的选择或许已经给出了他的答案。

为了避免为五角大楼服务,Hinton最终落脚在加拿大的多伦多大学。这个国家欢迎他,也支持他的神经网络研究。“去这个文明的小镇继续研究对我来说非常有吸引力。”

而HIinton也没有让加拿大失望。

正因为Hinton和他的学生的研究,加拿大现在已经成为人工智能研究的重要力量之一,多家人工智能巨头都将他们的研究中心开在了多伦多,各种前沿人才为了追随Hinton的脚步,络绎不绝地来到这座北方国度:“Hinton将加拿大拉入了AI超级大国的版图。”

坚持你认为对的,直到世界追上你的脚步

在多伦多,Hinton和他的团队研究出了更深度的神经网络,以解决更复杂的问题。他们共同开发了一个多层神经网络,这个深度神经网络也被应用于多个方面。

比如有人用它在80年代就打造了一辆无人车并且开上了路。

而现在已经是深度学习的另一位领袖人物、Facebook的AI实验室负责人Yann LeCun则利用深度神经网络建立了一个可以识别手写数字的系统。这一系统最终实现了商用。

在当时,深度神经网络的前景似乎一片大好,但是,现实中的故事往往没有这么简单。

Hinton的研究再次遇到了瓶颈。

“我们当时并没有足够的数据,也没有足够的计算机运行能力,AI和计算机科学的从业者认为神经网络是一厢情愿的想法。”

但Hinton始终坚持着,尽管完全不被重视

他坐在房间的最角落里参加学术会议,在大牛云集的人工智能会议上完全不被重视。甚至他自己也开始产生了怀疑:“有很多次我都觉得我不会继续这项工作了”。

直到这个世界开始慢慢追上他的脚步。

2006年,计算机的运行速度有了巨大的提高,超快速芯片的到来以及互联网上产生的大量数据使得Hinton的算法变得非常神奇。突然之间,计算机开始可以识别图像中的内容,可以识别语音,可以将一种语言翻译成另一种语言。

2012年,Geoffry Hinton和他的团队带着 AlexNet参加了那一年的 ImageNet ILSVRC 挑战赛,以惊人的优势获胜(错误率比第二名低了足足 10%)。这篇被 NIPS 2012 收录的论文被认为是深度学习热的开启。

同年,“神经网络”和“机器学习”等词汇也开始在纽约时报的头版出现。

“人们终于理解了这个概念,我感到很欣慰。”Hinton这样说。

推翻自己,胶囊网络的提出

尽管已经成为了深度学习的领袖人物,Hinton的脚步却从没有停歇。2017年10月26日,Hinton发表了一篇在AI圈掀起轩然大波的论文——Capsule Networks(胶囊网络)

Hinton高喊,“卷积神经网络(CNN)的时代已经过去了!”,将他过去几十年的研究翻了过去。

感兴趣的读者可以查看论文。

论文链接:

https://arxiv.org/pdf/1710.09829v1.pdf

尽管胶囊网络现在仍然处在婴儿期,在训练庞大的数据集时,仍可能会遇到问题,但在未来,Hinton相信它还有发展的巨大潜力。

也许,这位深度学习教父还将再次改写深度学习的发展历程。

今日机器学习概念】

Have a Great Definition

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2018-06-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏京东技术

京东AI研究院在CVPR 2018 LIP 全球竞赛中荣获两项冠军

2553
来自专栏数据的力量

【涂鸦板】好玩的百度预测

1865
来自专栏量子位

在鉴定名画真伪这件事上,专家可能要被AI代替了

原作 Jackie Snow Root 编译自 Technology Review 量子位 出品 | 公众号 QbitAI 鉴别画作真假的难度非常大,还特别烧钱...

2804
来自专栏新智元

【伪科学争议】谷歌研究员两万字批驳上交大用深度学习推断犯罪分子

【新智元导读】 不久前, 上海交通大学的两位研究者发布了一项题为“利用脸部照片自动推断犯罪性”的研究,利用基于有监督的机器学习的方法,根据人的脸部特征预测一个人...

3725
来自专栏AI科技评论

观点 | 玩转「马里奥」的算法能搞定「口袋妖怪」吗?

AI 科技评论:现在机器人玩游戏的水平甚至已经超过了人类,然而对于不同的游戏,一个算法是否全部搞定呢?软件开发者 Shayaan Jagtap 就以「马里奥」这...

922
来自专栏专知

【微软亚研130PPT教程】强化学习简介

【导读】近年来,强化学习特别是深度强化学习在棋类、视屏游戏、机器人控制等问题上取得了极大的成功,成为人工智能研究的热点。 微软亚洲研究院的秦涛研究员在报告《强化...

1913
来自专栏AI科技评论

动态 | 不止生成猫咪照片,GAN还在帮助天文学家生成史上最清晰的星系图像

AI科技评论按:本文由图普科技工程师翻译自《Neural networks promise sharpest ever images》,AI科技评论独家首发文章...

2949
来自专栏新智元

【Image++团队】鲁棒阅读和离线手写体实现模式识别突破

随着信息碎片化时代的来临,人们每天不得不被迫接受处理生活各种场景中无限砸向面前的信息,被各种终端图像、文字数据搞得力倦神疲。而针对大数据的处理,人工能力显然已经...

3978
来自专栏AI科技评论

澳门大学陈俊龙:颠覆纵向的「深度」学习,宽度学习系统如何用横向扩展进行高效增量学习?

AI 科技评论按:想必各位读者对深度神经网络及深度学习都不会感到陌生,不论是在数据处理或是应用层面,都取得了斐然的成绩。但囿于结构的复杂性及超参数的数量巨大,一...

40611
来自专栏新智元

【热点】谷歌腾讯FACEBOOK最新必争之地:神经网络翻译NMT

【新智元导读】 5月10日,Facebook发布了一项新的机器翻译技术,使用CNN技术而非传统的RNN,在翻译准确度超越了此前被认为是2016年10大AI突破技...

59726

扫码关注云+社区

领取腾讯云代金券