在未来的大数据和机器学习领域,获得一份不错的工作?

AI 的发展脚步会加快,这一年将是 AI 技术重生和数据科学得以重新定义的一年。对于雄心勃勃的数据科学家来说,他们如何在与数据科学相关的工作市场中脱颖而出?会有足够多的数据科学相关工作吗?还是说有可能出现萎缩?接下来,让我们来分析一下数据科学的趋势,并一探如何在未来的大数据和机器学习 /AI 领域获得一份不错的工作。”

在这里还是要推荐下我自己建的大数据学习交流群:199427210,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。

1、你需要牢固掌握概率统计学,并学习和掌握一些算法,比如朴素贝叶斯、高斯混合模型、隐马尔可夫模型、混淆矩

阵、ROC 曲线、P-Value 等。

不但要理解这些算法,还要知道它们的工作原理。你需要牢固掌握梯度下降、凸优化、拉各朗日方法论、二次规划、偏微分方程、求积法等相关算法。

如果你想找一份高薪的工作,还需要掌握机器学习技术和算法,比如 k-NN、朴素贝叶斯、SVM 和决策森林等。

2、

现在大部分机器学习都需要海量数据,所以你无法在单台机器上进行机器学习。所以,你需要用到集群,需要掌握 Apache Hadoop 和一些云服务,如 Rackspace、Amazon EC2、Google Cloud Platform、OpenStack 和 Microsoft Azure 等。

你还需要掌握各种 Unix 工具,如 cat、grep、find、awk、sed、sort、cut、tr 等。因为机器学习基本上都是在 Unix 系统上运行的,所以需要掌握这些工具,知道它们的作用以及如何使用它们。

3、在掌握编程语言和算法的同时,不要忽略了数据可视化的作用。如果无法让你自己或别人理解数据,那么它们就变得毫无意义。数据可视化就是指如何在正确的时间向正确的人展示数据,以便让他们从中获得价值。主要的数据可视化工具包括:Tableau、QlikView、Someka Heat Maps、FusionCharts、Sisense、Plotly、Highcharts、Datawrapper、D3.js、ggplot 等。

4、要成为数据科学家,不一定非要拿到数据科学方面的学位。事实上,你完全不需要这么做,这样做反而不是个好主意。如果你能拿到计算机学位、工程学学位、经济学学位、数学学位、统计学学位、精算师学位、金融学学位或者自然科学学位(物理、化学或生物)都是可以的。甚至是人文科学(包括社会科学)也是可以的。

2019年跳槽指南:如何找到一份人工智能相关的工作?

AI前线 • 7小时前 • 技能Get

大数据把 AI 推向了技术炒作的舞台正中央,数据科学和机器学习在各行各业开始崭露头角

AI 前线导读:“2017 年,大数据把 AI 推向了技术炒作的舞台正中央,数据科学和机器学习在各行各业开始崭露头角。机器学习开始被应用于解决数据分析问题。机器学习、AI 和预测分析成为 2017 年的热门话题。我们见证了基于数据的价值创新,包括数据科学平台、深度学习和主要几个厂商提供的机器学习云服务,还有机器智能、规范性分析、行为分析和物联网。

增强技术实力

编程语言和开发工具

365 Data Science 收集了来自 LinkedIn 的 1001 数据科学家的信息,发现需求量最大的编程语言为 R 语言、Python 和 SQL。另外,还要求具备 MATLAB、Java、Scala 和 C/C++ 方面的知识。为了能够脱颖而出,需要熟练掌握 Weka 和 NumPy 这类工具。

概率统计学、应用数学和机器学习算法

你需要牢固掌握概率统计学,并学习和掌握一些算法,比如朴素贝叶斯、高斯混合模型、隐马尔可夫模型、混淆矩阵、ROC 曲线、P-Value 等。

不但要理解这些算法,还要知道它们的工作原理。你需要牢固掌握梯度下降、凸优化、拉各朗日方法论、二次规划、偏微分方程、求积法等相关算法。

如果你想找一份高薪的工作,还需要掌握机器学习技术和算法,比如 k-NN、朴素贝叶斯、SVM 和决策森林等。

分布式计算和 Unix 工具

现在大部分机器学习都需要海量数据,所以你无法在单台机器上进行机器学习。所以,你需要用到集群,需要掌握 Apache Hadoop 和一些云服务,如 Rackspace、Amazon EC2、Google Cloud Platform、OpenStack 和 Microsoft Azure 等。

你还需要掌握各种 Unix 工具,如 cat、grep、find、awk、sed、sort、cut、tr 等。因为机器学习基本上都是在 Unix 系统上运行的,所以需要掌握这些工具,知道它们的作用以及如何使用它们。

查询语言和 NoSQL 数据库

传统关系型数据库已经老去。除了 Hadoop 之外,你还需要掌握 SQL、Hive 和 Pig,以及 NoSQL 数据库,如 MongoDB、Casssandra、HBase。

基于 NoSQL 分布式数据库的基础设施已经成为大数据仓库的基础。原先在一个中心关系型数据库上需要 20 个小时才能处理完的任务,在一个大型的 Hadoop 集群上可能只需要 3 分钟时间。当然,你也可以使用 MapReduce、Cloudera、Tarn、PaaS、Chef、Flume 和 ABAP 这些工具。

数据可视化工具

在掌握编程语言和算法的同时,不要忽略了数据可视化的作用。如果无法让你自己或别人理解数据,那么它们就变得毫无意义。数据可视化就是指如何在正确的时间向正确的人展示数据,以便让他们从中获得价值。主要的数据可视化工具包括:Tableau、QlikView、Someka Heat Maps、FusionCharts、Sisense、Plotly、Highcharts、Datawrapper、D3.js、ggplot 等。

正确选择教育背景和专业

要成为数据科学家,不一定非要拿到数据科学方面的学位。事实上,你完全不需要这么做,这样做反而不是个好主意。如果你能拿到计算机学位、工程学学位、经济学学位、数学学位、统计学学位、精算师学位、金融学学位或者自然科学学位(物理、化学或生物)都是可以的。甚至是人文科学(包括社会科学)也是可以的。

但或许你会在其他领域得到更好的发展,比如经济、应用数学或工程领域。首先要确定数据科学这条路是不是适合自己。2019 年绝对不会让那些有志在数据科学领域一展身手的人失望。不过还是那句话,一个具备分析能力的大脑、熟练的编程技能、诚挚的热情和持续自我提升的毅力将决定你的数据科学家之路会走多远。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT 指南者专栏

究竟什么才是学习?

我一直以为,学习就应该是拿着学习的资料,花大块的时间在图书馆里面按照计划一字一句、从头到尾的进行研习。但慢慢的我发现,我对学习的理解太狭隘,我一直在错误的进行学...

27580
来自专栏量子位

通过图灵测试!Google掌舵人说“打电话AI”是一次非凡突破

今天凌晨,Google I/O 2018大会最后一日,前不久刚刚获得年度图灵奖的Alphabet新任董事长John Hennessy登上舞台。

13130
来自专栏技术翻译

11个有趣的【数据可视化】案例

数据可视化专家每天都在数据设计的世界里创造惊人的东西,数据可视化是在许多不同领域的重要工具。为了纪念所有艺术家和设计师在世界各地进行惊人的数据可视化,这里收集了...

2.6K00
来自专栏奇点大数据

如何看待人工智障?

在这之中,有很多人其实对人工智能是持有怀疑态度的,或是无神论者或是有神论者,持有这种观点的人都是大有人在。

12230
来自专栏PPV课数据科学社区

【观点】数据挖掘入门必看10个问题

NO.1 Data Mining 和统计分析有什么不同? 硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。一般...

29570
来自专栏新智元

生成算法让机器人在真实世界中演化,全程无需人类介入(视频)

【新智元导读】挪威奥斯陆大学研究者让机器人使用“生成设计”算法和3D打印机,自我设计、发展和制造,全程无需人类输入。在生成设计中,具有创造力并且能够创造的机器设...

33260
来自专栏数据的力量

【分析工具介绍】工欲善其事必先利其器

20860
来自专栏VRPinea

VR游戏开发商Vertigo Games成立线下娱乐公司,并带来大空间的《亚利桑那阳光》VR体验

近日,《亚利桑那阳光》的开发商VertigoGames,宣布成立了一家专注于线下娱乐(LBE)内容开发与分发的全新公司——Vertigo Arcades。

12800
来自专栏DT数据侠

爬取了252家酒店的数据后,我发现了热门旅游城市酒店的秘密

外出旅游,酒店一定会占据一大部分开销。哪些酒店的价格是合理的?这个价格配得上它的地理位置么?这个价格和它对应的服务匹配么?数据侠 Johnnie 以纽约的酒店为...

16220
来自专栏PPV课数据科学社区

到底穿T恤、正装还是道袍?数据挖掘师的定位

(图为:剑网3 玩家Cosplay) 文|周学春,一个在银行做挖掘的博士,微信公众号:比格堆塔 心态不够平静,晚上在小区里面逛了一圈又一圈、一圈又一圈、一圈又一...

31560

扫码关注云+社区

领取腾讯云代金券