专栏首页灯塔大数据原创译文 | 未来几年中国可能会引领人工智能研究领域

原创译文 | 未来几年中国可能会引领人工智能研究领域

导读:

据商业分析公司Elsevier今天发布的一份报告显示,如果目前的趋势持续下去,中国将在未来四年内在人工智能研究论文产量上超过欧洲。

(文末更多往期译文推荐)

该报告发现,美国是谷歌、亚马逊和Facebook等科技巨头的所在地,已经成功吸引了人工智能方面的顶尖人才。它还表明,美国的研究正在从大学科技公司的学术环境转向研究运营。

报告称,中国在2004年发表的论文总数中开始超过美国的研究。

报告指出:“中国渴望在全球范围内引领人工智能,并得到雄心勃勃的国家政策的支持。” “中国人工智能研究人员的净脑获益也表明了一个有吸引力的研究环境。中国的人工智能专注于计算机视觉,没有专门的自然语言处理和知识表示集群,包括语音识别,可能是因为中国的这类研究是由那些可能不会发表许多科学文章的公司进行的。”

除了百度和腾讯等公司不断增长的研究外,中国还是地球上资金最充足的人工智能公司的所在地。

例如,本周早些时候,有消息称Face ++母公司Megvii正在寻求以35亿美元的估值再筹集5亿美元。

除了今日未来研究所的报告和年度互联网趋势报告,该报告描绘了来自中国的人工智能主导地位,技术名人如李开复博士和前百度首席运营官齐鲁也预测了未来几年中国的人工智能举措将超过世界其他地区,他们曾在美国和中国的顶级科技公司担任领导职务。

报告发现,尽管已发表的论文总数众多,但中国的人工智能研究论文并没有在同行中引起太多的引用,这种趋势可能是区域性而非全球性的征兆。

在全球范围内,过去五年中发表的AI研究论文数量增加了12.9%,而Arxiv在核心AI主题领域的预印本,如自然语言处理和计算机视觉,在过去五年中增长了37%。

印度目前在人工智能研究论文的产量中排名第三,仅次于美国和中国。德国和日本在人工智能研究论文产量方面排名世界第五和第六,而伊朗排在第九位,与法国和加拿大等国家并列。

同时,出现最高增长水平的出版物类别包括机器学习和概率推理,计算机视觉和神经网络。

据报道,欧洲目前被认为是一个目前在人工智能相关的学术产出方面处于领先地位的地区。

去年由风险投资公司Atomico发布的年度欧洲技术状态报告敦促该地区的科技部门和研究机构之间建立更紧密的联系,以便与中国和美国竞争。

原文

China could lead world in AI research in coming years, Elsevier report finds

China will overtake Europe in artificial intelligence research paper output within the next four years if current trends continue, according to a report released today by business analytics company Elsevier.

The report found that the U.S., home to tech giants like Google, Amazon, and Facebook, has succeeded in attracting the top talent in artificial intelligence. It also shows that research in the U.S. is shifting from academic settings to research operations within large tech companies.

China started to outpace research from the United States in total number of papers published in 2004, the report said.

“China aspires to lead globally in AI and is supported by ambitious national policies,” the report reads. “A net brain gain of AI researchers in China also suggests an attractive research environment. China’s AI focuses on computer vision and does not have a dedicated natural language processing and knowledge representation cluster, including speech recognition, possibly because this type of research in China is conducted by corporations that may not publish as many scientific articles.”

In addition to a growing body of research from companies like Baidu and Tencent, China is home to some of the best-funded AI companies on Earth.

Earlier this week, for example, news emerged that Face++ parent company Megvii is reportedly looking to raise an additional $500 million at a $3.5 billion valuation.

In addition to reports from Future Today Institute and the annual Internet Trends Report that chart growing AI dominance from China, tech luminaries like Dr. Kai-Fu Lee and former Baidu COO Qi Lu — who have spent time in leadership positions at top tech companies in the U.S. and China — have predicted that Chinese AI initiatives will overtake those in other parts of the world in the years ahead.

Despite the total number of papers published, Chinese AI research papers have not seen as much citation among peers, a trend that could be a symptom of regional rather than global reach, the report found.

Globally, the number of AI research papers published has increased 12.9 percent in the past five years, while Arxiv preprints in core AI subject areas, like natural language processing and computer vision, has grown 37 percent in the past five years.

India is currently third in the output of AI research papers, behind the U.S. and China. Germany and Japan rank fifth and sixth worldwide in AI research paper output, while Iran, in ninth place, ranks alongside countries like France and Canada.

Publication categories that have seen the highest level of growth in that period include machine learning and probabilistic reasoning, computer vision, and neural networks.

When considered as a region, Europe currently leads the world in scholarly output related to artificial intelligence, according to the report.

The annual State of European Tech report released last year by venture capital firm Atomico urged greater connections between the region’s tech sector and research institutions in order to compete with China and the United States.

文章编辑:思加

本文分享自微信公众号 - 灯塔大数据(DTbigdata)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-12-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 原创译文 | 德国法院裁定苹果公司侵犯高通专利权

    本文为灯塔大数据原创内容,欢迎个人转载至朋友圈,其他机构转载请在文章开头标注:“转自:灯塔大数据;微信:DTbigdata”

    灯塔大数据
  • 人工智能 | AI 不断入侵,程序员还能不能好好敲代码了

    近日,微信翻译团队又将其围棋 AI 程序 PhoenixGo 开源。这是一个基于 AlphaGo Zero 论文实现,具有超越人类棋手的围棋功力,在 2018 ...

    灯塔大数据
  • 经验谈丨如何在一年之内成为一名数据挖掘工程师?

    ? ? 不管是数据分析师还是数据挖掘工程师,我们的目标都是认识数据,从数据中发现需要的信息。 ? ? 所需要的技能 ? 做数据分析,统计的知识肯定是需要的,E...

    灯塔大数据
  • 通过CalligraphyGAN生成抽象艺术的框架和数据集(CS SV)

    随着深度学习的发展,人工智能(AI)近年来取得了许多突破,并在各种任务,例如对象检测,阅读理解和视频游戏有着超人类的表现。生成建模,例如各种生成对抗网络(GAN...

    木樾233
  • 视频分割--Learning to Segment Instances in Videos with Spatial Propagation Network

    Learning to Segment Instances in Videos with Spatial Propagation Network CVPRW...

    用户1148525
  • 数据科学的下一次火爆:数据科学指导的创新策略(CS CY)

    随着数据挖掘的研究和应用不断扩展到医学、金融、安全等各个领域,人们清楚地感受到对多样化人才的需求。随着大数据在联邦、私人和学术领域的推广,在国内和国际上提供了大...

    用户7095611
  • 斯坦福大学使用机器学习做次季节温度/降水预报

    文章下载地址: https://arxiv.org/pdf/1809.07394.pdf

    zhangqibot
  • 语义分割--Deep Dual Learning for Semantic Image Segmentation

    Deep Dual Learning for Semantic Image Segmentation ICCV2017

    用户1148525
  • 近距离接触: 一个制止疾病爆发的方法(CS CY)

    我们提供了一个移动应用程序解决方案,通过跟踪疾病潜伏期中可能的感染,帮助遏制疫情爆发。 我们考虑一个主要通过近端接触,通过呼吸道飞沫在人群中传播的感染的特殊病例...

    用户7095611
  • 2020 ISUX校园招聘专属通道

    ? 腾讯ISUX isux.tencent.com 社交用户体验设计 ? ISUX校园招聘2020专属通道 ? ISUX 2020年校园招聘正式启动,爱设计...

    腾讯ISUX

扫码关注云+社区

领取腾讯云代金券