前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >情感分析——深入snownlp原理和实践

情感分析——深入snownlp原理和实践

作者头像
felixzhao
发布2019-01-31 16:20:21
6.3K0
发布2019-01-31 16:20:21
举报
文章被收录于专栏:null的专栏null的专栏null的专栏

一、snownlp简介

snownlp是什么?

SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode。

以上是官方对snownlp的描述,简单地说,snownlp是一个中文的自然语言处理的Python库,支持的中文自然语言操作包括:

  • 中文分词
  • 词性标注
  • 情感分析
  • 文本分类
  • 转换成拼音
  • 繁体转简体
  • 提取文本关键词
  • 提取文本摘要
  • tf,idf
  • Tokenization
  • 文本相似

在本文中,将重点介绍snownlp中的情感分析(Sentiment Analysis)。

二、snownlp情感分析模块的使用

2.1、snownlp库的安装

snownlp的安装方法如下:

pip install snownlp

2.2、使用snownlp情感分析

利用snownlp进行情感分析的代码如下所示:

#coding:UTF-8
import sys
from snownlp import SnowNLP

def read_and_analysis(input_file, output_file):
  f = open(input_file)
  fw = open(output_file, "w")
  while True:
    line = f.readline()
    if not line:
      break
    lines = line.strip().split("\t")
    if len(lines) < 2:
      continue

    s = SnowNLP(lines[1].decode('utf-8'))
    # s.words 查询分词结果
    seg_words = ""
    for x in s.words:
      seg_words += "_"
      seg_words += x
    # s.sentiments 查询最终的情感分析的得分
    fw.write(lines[0] + "\t" + lines[1] + "\t" + seg_words.encode('utf-8') + "\t" + str(s.sentiments) + "\n")
  fw.close()
  f.close()

if __name__ == "__main__":
  input_file = sys.argv[1]
  output_file = sys.argv[2]
  read_and_analysis(input_file, output_file)

上述代码会从文件中读取每一行的文本,并对其进行情感分析并输出最终的结果。

注:库中已经训练好的模型是基于商品的评论数据,因此,在实际使用的过程中,需要根据自己的情况,重新训练模型。

2.3、利用新的数据训练情感分析模型

在实际的项目中,需要根据实际的数据重新训练情感分析的模型,大致分为如下的几个步骤:

  • 准备正负样本,并分别保存,如正样本保存到pos.txt,负样本保存到neg.txt
  • 利用snownlp训练新的模型
  • 保存好新的模型

重新训练情感分析的代码如下所示:

#coding:UTF-8

from snownlp import sentiment

if __name__ == "__main__":
  # 重新训练模型
  sentiment.train('./neg.txt', './pos.txt')
  # 保存好新训练的模型
  sentiment.save('sentiment.marshal')

注意:若是想要利用新训练的模型进行情感分析,需要修改代码中的调用模型的位置。

data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'sentiment.marshal')

三、snownlp情感分析的源码解析

snownlp中支持情感分析的模块在sentiment文件夹中,其核心代码为__init__.py

如下是Sentiment类的代码:

class Sentiment(object):

    def __init__(self):
        self.classifier = Bayes() # 使用的是Bayes的模型

    def save(self, fname, iszip=True):
        self.classifier.save(fname, iszip) # 保存最终的模型

    def load(self, fname=data_path, iszip=True):
        self.classifier.load(fname, iszip) # 加载贝叶斯模型

    # 分词以及去停用词的操作    
    def handle(self, doc):
        words = seg.seg(doc) # 分词
        words = normal.filter_stop(words) # 去停用词
        return words # 返回分词后的结果

    def train(self, neg_docs, pos_docs):
        data = []
        # 读入负样本
        for sent in neg_docs:
            data.append([self.handle(sent), 'neg'])
        # 读入正样本
        for sent in pos_docs:
            data.append([self.handle(sent), 'pos'])
        # 调用的是Bayes模型的训练方法
        self.classifier.train(data)

    def classify(self, sent):
        # 1、调用sentiment类中的handle方法
        # 2、调用Bayes类中的classify方法
        ret, prob = self.classifier.classify(self.handle(sent)) # 调用贝叶斯中的classify方法
        if ret == 'pos':
            return prob
        return 1-probclass Sentiment(object):

    def __init__(self):
        self.classifier = Bayes() # 使用的是Bayes的模型

    def save(self, fname, iszip=True):
        self.classifier.save(fname, iszip) # 保存最终的模型

    def load(self, fname=data_path, iszip=True):
        self.classifier.load(fname, iszip) # 加载贝叶斯模型

    # 分词以及去停用词的操作    
    def handle(self, doc):
        words = seg.seg(doc) # 分词
        words = normal.filter_stop(words) # 去停用词
        return words # 返回分词后的结果

    def train(self, neg_docs, pos_docs):
        data = []
        # 读入负样本
        for sent in neg_docs:
            data.append([self.handle(sent), 'neg'])
        # 读入正样本
        for sent in pos_docs:
            data.append([self.handle(sent), 'pos'])
        # 调用的是Bayes模型的训练方法
        self.classifier.train(data)

    def classify(self, sent):
        # 1、调用sentiment类中的handle方法
        # 2、调用Bayes类中的classify方法
        ret, prob = self.classifier.classify(self.handle(sent)) # 调用贝叶斯中的classify方法
        if ret == 'pos':
            return prob
        return 1-prob

从上述的代码中,classify函数和train函数是两个核心的函数,其中,train函数用于训练一个情感分类器,classify函数用于预测。在这两个函数中,都同时使用到的handle函数,handle函数的主要工作为:

  1. 对输入文本分词
  2. 去停用词

情感分类的基本模型是贝叶斯模型Bayes,对于贝叶斯模型,可以参见文章简单易学的机器学习算法——朴素贝叶斯。对于有两个类别c1c1c_1和c2c2c_2的分类问题来说,其特征为w1,⋯,wnw1,⋯,wnw_1,\cdots ,w_n,特征之间是相互独立的,属于类别c1c1c_1的贝叶斯模型的基本过程为:

P(c1∣w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)P(w1,⋯,wn)P(c1∣w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)P(w1,⋯,wn)

P\left ( c_1\mid w_1,\cdots ,w_n \right )=\frac{P\left ( w_1,\cdots , w_n\mid c_1 \right )\cdot P(c_1)}{P\left ( w_1,\cdots ,w_n \right )}

其中:

P(w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)+P(w1,⋯,wn∣c2)⋅P(c2)P(w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)+P(w1,⋯,wn∣c2)⋅P(c2)

P\left ( w_1,\cdots ,w_n \right )=P\left ( w_1,\cdots ,w_n\mid c_1 \right )\cdot P\left ( c_1 \right )+P\left ( w_1,\cdots ,w_n\mid c_2\right )\cdot P\left ( c_2\right )

3.1、贝叶斯模型的训练

贝叶斯模型的训练过程实质上是在统计每一个特征出现的频次,其核心代码如下:

def train(self, data):
    # data 中既包含正样本,也包含负样本
    for d in data: # data中是list
        # d[0]:分词的结果,list
        # d[1]:正/负样本的标记
        c = d[1]
        if c not in self.d:
            self.d[c] = AddOneProb() # 类的初始化
        for word in d[0]: # 分词结果中的每一个词
            self.d[c].add(word, 1)
    # 返回的是正类和负类之和
    self.total = sum(map(lambda x: self.d[x].getsum(), self.d.keys())) # 取得所有的d中的sum之和

这使用到了AddOneProb类,AddOneProb类如下所示:

class AddOneProb(BaseProb):

    def __init__(self):
        self.d = {}
        self.total = 0.0
        self.none = 1 # 默认所有的none为1
    # 这里如果value也等于1,则当key不存在时,累加的是2
    def add(self, key, value):
        self.total += value
        # 不存在该key时,需新建key
        if not self.exists(key):
            self.d[key] = 1
            self.total += 1
        self.d[key] += value

注意:

  1. none的默认值为1
  2. 当key不存在时,total和对应的dkey累加的是1+value,这在后面预测时需要用到

AddOneProb类中的total表示的是正类或者负类中的所有值;train函数中的total表示的是正负类的total之和。

当统计好了训练样本中的total和每一个特征key的dkey后,训练过程就构建完成了。

3.2、贝叶斯模型的预测

预测的过程使用到了上述的公式,即:

P(c1∣w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)P(w1,⋯,wn∣c1)⋅P(c1)+P(w1,⋯,wn∣c2)⋅P(c2)P(c1∣w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)P(w1,⋯,wn∣c1)⋅P(c1)+P(w1,⋯,wn∣c2)⋅P(c2)

P\left ( c_1\mid w_1,\cdots ,w_n \right )=\frac{P\left ( w_1,\cdots , w_n\mid c_1 \right )\cdot P(c_1)}{P\left ( w_1,\cdots ,w_n\mid c_1 \right )\cdot P\left ( c_1 \right )+P\left ( w_1,\cdots ,w_n\mid c_2\right )\cdot P\left ( c_2\right )}

对上述的公式简化:

P(c1∣w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)P(w1,⋯,wn∣c1)⋅P(c1)+P(w1,⋯,wn∣c2)⋅P(c2)=11+P(w1,⋯,wn∣c2)⋅P(c2)P(w1,⋯,wn∣c1)⋅P(c1)=11+explog(P(w1,⋯,wn∣c2)⋅P(c2)P(w1,⋯,wn∣c1)⋅P(c1))=11+explog(P(w1,⋯,wn∣c2)⋅P(c2))−log(P(w1,⋯,wn∣c1)⋅P(c1))P(c1∣w1,⋯,wn)=P(w1,⋯,wn∣c1)⋅P(c1)P(w1,⋯,wn∣c1)⋅P(c1)+P(w1,⋯,wn∣c2)⋅P(c2)=11+P(w1,⋯,wn∣c2)⋅P(c2)P(w1,⋯,wn∣c1)⋅P(c1)=11+explog(P(w1,⋯,wn∣c2)⋅P(c2)P(w1,⋯,wn∣c1)⋅P(c1))=11+explog(P(w1,⋯,wn∣c2)⋅P(c2))−log(P(w1,⋯,wn∣c1)⋅P(c1))

\begin{align*} P\left ( c_1\mid w_1,\cdots ,w_n \right ) &= \frac{P\left ( w_1,\cdots , w_n\mid c_1 \right )\cdot P(c_1)}{P\left ( w_1,\cdots ,w_n\mid c_1 \right )\cdot P\left ( c_1 \right )+P\left ( w_1,\cdots ,w_n\mid c_2\right )\cdot P\left ( c_2\right )}\ &= \frac{1}{1+\frac{P\left ( w_1,\cdots ,w_n\mid c_2\right )\cdot P\left ( c_2\right )}{P\left ( w_1,\cdots ,w_n\mid c_1\right )\cdot P\left ( c_1\right )}}\ &= \frac{1}{1+exp\left log\left ( \frac{P\left ( w_1,\cdots ,w_n\mid c_2\right )\cdot P\left ( c_2\right )}{P\left ( w_1,\cdots ,w_n\mid c_1\right )\cdot P\left ( c_1\right )} \right ) \right }\ &= \frac{1}{1+exp\left log\left ( P\left ( w_1,\cdots ,w_n\mid c_2\right )\cdot P\left ( c_2\right ) \right )-log\left ( P\left ( w_1,\cdots ,w_n\mid c_1\right )\cdot P\left ( c_1\right ) \right ) \right } \end{align*}

其中,分母中的1可以改写为:

1=explog(P(w1,⋯,wn∣c1)⋅P(c1))−log(P(w1,⋯,wn∣c1)⋅P(c1))1=explog(P(w1,⋯,wn∣c1)⋅P(c1))−log(P(w1,⋯,wn∣c1)⋅P(c1))

1=exp\left log\left ( P\left ( w_1,\cdots ,w_n\mid c_1\right )\cdot P\left ( c_1\right ) \right )-log\left ( P\left ( w_1,\cdots ,w_n\mid c_1\right )\cdot P\left ( c_1\right ) \right ) \right

上述过程对应的代码如下所示:

def classify(self, x):
    tmp = {}
    for k in self.d: # 正类和负类
        tmp[k] = log(self.d[k].getsum()) - log(self.total) # 正类/负类的和的log函数-所有之和的log函数
        for word in x:
            tmp[k] += log(self.d[k].freq(word)) # 词频,不存在就为0
    ret, prob = 0, 0
    for k in self.d:
        now = 0
        try:
            for otherk in self.d:
                now += exp(tmp[otherk]-tmp[k])
            now = 1/now
        except OverflowError:
            now = 0
        if now > prob:
            ret, prob = k, now
    return (ret, prob)

其中,第一个for循环中的tmpk对应了公式中的log(P(ck))log(P(ck))log\left ( P\left ( c_k\right ) \right ),第二个for循环中的tmpk对应了公式中的log(P(w1,⋯,wn∣ck)⋅P(ck))log(P(w1,⋯,wn∣ck)⋅P(ck))log\left ( P\left ( w_1,\cdots ,w_n\mid c_k\right )\cdot P\left ( c_k\right ) \right )。

参考文献

  1. snownlp github
  2. 自然语言处理库之snowNLP
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年06月26日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、snownlp简介
  • 二、snownlp情感分析模块的使用
    • 2.1、snownlp库的安装
      • 2.2、使用snownlp情感分析
        • 2.3、利用新的数据训练情感分析模型
        • 三、snownlp情感分析的源码解析
          • 3.1、贝叶斯模型的训练
            • 3.2、贝叶斯模型的预测
            • 参考文献
            相关产品与服务
            NLP 服务
            NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档