前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >斯坦福CS231n项目实战(二):线性支持向量机SVM

斯坦福CS231n项目实战(二):线性支持向量机SVM

作者头像
红色石头
发布2019-05-25 22:44:20
8680
发布2019-05-25 22:44:20
举报

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/79267463

我的网站:红色石头的机器学习之路 我的CSDN:红色石头的专栏 我的知乎:红色石头 我的微博:RedstoneWill的微博 我的GitHub:RedstoneWill的GitHub 我的微信公众号:红色石头的机器学习之路(ID:redstonewill)

支持向量机(Support Vector Machine, SVM)的目标是希望正确类别样本的分数(WTXWTXW^TX)比错误类别的分数越大越好。两者之间的最小距离(margin)我们用ΔΔ\Delta来表示,一般令Δ=1Δ=1\Delta=1。

对于单个样本,SVM的Loss function可表示为:

Li=∑j≠yimax(0,sj−syi+Δ)Li=∑j≠yimax(0,sj−syi+Δ)

L_i=\sum_{j\neq y_i}max(0,s_j-s_{y_i}+\Delta)

将sj=WTjxisj=WjTxis_j=W_j^Tx_i,syi=WTyixisyi=WyiTxis_{y_i}=W_{y_i}^Tx_i带入上式:

Li=∑j≠yimax(0,WTjxi−WTyixi+Δ)Li=∑j≠yimax(0,WjTxi−WyiTxi+Δ)

L_i=\sum_{j\neq y_i}max(0,W_j^Tx_i-W_{y_i}^Tx_i+\Delta)

其中,(xi,yi)(xi,yi)(x_i,y_i)表示正确类别,syisyis_{y_i}表示正确类别的分数score,sjsjs_j表示错误类别的分数score。从LiLiL_i表达式来看,sjsjs_j不仅要比syisyis_{y_i}小,而且距离至少是ΔΔ\Delta,才能保证Li=0Li=0L_i=0。若sj>syi+Δsj>syi+Δs_j>s_{y_i}+\Delta,则Li>0Li>0L_i>0。也就是说SVM希望sjsjs_j与syisyis_{y_i}至少相差一个ΔΔ\Delta的距离。

该Loss function我们称之为Hinge Loss:

这里写图片描述
这里写图片描述

举个简单的例子,假如一个三分类的输出分数为:[10, 20, -10],正确的类别是第0类,则该样本的Loss function为:

Li=max(0,20−10+1)+max(0,−10−10+1)=11Li=max(0,20−10+1)+max(0,−10−10+1)=11

L_i=max(0, 20-10+1)+max(0, -10-10+1)=11

若正确的类别是第1类,则Loss function为:

Li=max(0,10−20+1)+max(0,−10−20+1)=0Li=max(0,10−20+1)+max(0,−10−20+1)=0

L_i=max(0, 10-20+1)+max(0, -10-20+1)=0

值得一提的是,还可以对hinge loss进行平方处理,也称为L2-SVM。其Loss function为:

Li=∑j≠yimax(0,WTjxi−WTyixi+Δ)2Li=∑j≠yimax(0,WjTxi−WyiTxi+Δ)2

L_i=\sum_{j\neq y_i}max(0,W_j^Tx_i-W_{y_i}^Tx_i+\Delta)^2

这种平方处理的目的是增大对正类别与负类别之间距离的惩罚。

为了防止过拟合,限制权重W的大小,引入正则项:

Li=∑j≠yimax(0,WTjxi−WTyixi+Δ)+λ∑k∑lW2k,lLi=∑j≠yimax(0,WjTxi−WyiTxi+Δ)+λ∑k∑lWk,l2

L_i=\sum_{j\neq y_i}max(0,W_j^Tx_i-W_{y_i}^Tx_i+\Delta)+\lambda \sum_k\sum_l W_{k,l}^2

L2正则项作用是限制权重W过大,且使得权重W分布均匀。而L1正则项倾向于得到离散的W,各W之间差距较大。

下面是Linear SVM的实例代码,本文详细代码请见我的:

1. Load the CIFAR10 data

代码语言:javascript
复制
# Load the raw CIFAR-10 data.
cifar10_dir = 'CIFAR10/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
代码语言:javascript
复制
Training data shape:  (50000, 32, 32, 3)
Training labels shape:  (50000,)
Test data shape:  (10000, 32, 32, 3)
Test labels shape:  (10000,)

Show some CIFAR10 images

代码语言:javascript
复制
classes = ['plane', 'car', 'bird', 'cat', 'dear', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
num_each_class = 7

for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, num_each_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + (y + 1)
        plt.subplot(num_each_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()
这里写图片描述
这里写图片描述

Subsample the data for more efficient code execution

代码语言:javascript
复制
# Split the data into train, val, and test sets
num_train = 49000
num_val = 1000
num_test = 1000

# Validation set
mask = range(num_train, num_train + num_val)
X_val = X_train[mask]
y_val = y_train[mask]

# Train set
mask = range(num_train)
X_train = X_train[mask]
y_train = y_train[mask]

# Test set
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]

print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
代码语言:javascript
复制
Train data shape:  (49000, 32, 32, 3)
Train labels shape:  (49000,)
Validation data shape:  (1000, 32, 32, 3)
Validation labels shape  (1000,)
Test data shape:  (1000, 32, 32, 3)
Test labels shape:  (1000,)

2. Preprocessing

Reshape the images data into rows

代码语言:javascript
复制
# Preprocessing: reshape the images data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))

print('Train data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
代码语言:javascript
复制
Train data shape:  (49000, 3072)
Validation data shape:  (1000, 3072)
Test data shape:  (1000, 3072)

Subtract the mean images

代码语言:javascript
复制
# Processing: subtract the mean images
mean_image = np.mean(X_train, axis=0)
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8'))
plt.show()
这里写图片描述
这里写图片描述
代码语言:javascript
复制
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image

Append the bias dimension of ones

代码语言:javascript
复制
# append the bias dimension of ones (i.e. bias trick)
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
print('Train data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
代码语言:javascript
复制
Train data shape:  (49000, 3073)
Validation data shape:  (1000, 3073)
Test data shape:  (1000, 3073)

3. Define a linear SVM classifier

代码语言:javascript
复制
class LinearSVM(object):
    """ A subclass that uses the Multiclass SVM loss function """
    def __init__(self):
        self.W = None

    def loss_naive(self, X, y, reg):
        """
        Structured SVM loss function, naive implementation (with loops).
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i]
        - reg: float, regularization strength
        Return:
        - loss: the loss value between predict value and ground truth
        - dW: gradient of W
        """

        # Initialize loss and dW
        loss = 0.0
        dW = np.zeros(self.W.shape)

        # Compute the loss and dW
        num_train = X.shape[0]
        num_classes = self.W.shape[1] 
        for i in range(num_train):
            scores = np.dot(X[i], self.W)
            for j in range(num_classes):
                if j == y[i]:
                    margin = 0
                else:
                    margin = scores[j] - scores[y[i]] + 1    # delta = 1
                    if margin > 0:
                        loss += margin
                        dW[:,j] += X[i].T
                        dW[:,y[i]] += -X[i].T
        # Divided by num_train
        loss /= num_train
        dW /= num_train

        # Add regularization
        loss += 0.5 * reg * np.sum(self.W * self.W)
        dW += reg * self.W

        return loss, dW
    def loss_vectorized(self, X, y, reg):
        """
        Structured SVM loss function, naive implementation (with loops).
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i]
        - reg: (float) regularization strength
        Outputs:
        - loss: the loss value between predict value and ground truth
        - dW: gradient of W
        """

         # Initialize loss and dW
        loss = 0.0
        dW = np.zeros(self.W.shape)

        # Compute the loss
        num_train = X.shape[0]
        scores = np.dot(X, self.W)
        correct_score = scores[range(num_train), list(y)].reshape(-1, 1)    # delta = -1
        margin = np.maximum(0, scores - correct_score + 1)
        margin[range(num_train), list(y)] = 0
        loss = np.sum(margin) / num_train + 0.5 * reg * np.sum(self.W * self.W)

        # Compute the dW
        num_classes = self.W.shape[1]
        mask = np.zeros((num_train, num_classes))
        mask[margin > 0] = 1
        mask[range(num_train), list(y)] = 0
        mask[range(num_train), list(y)] = -np.sum(mask, axis=1)
        dW = np.dot(X.T, mask)
        dW = dW / num_train + reg * self.W

        return loss, dW

    def train(self, X, y, learning_rate = 1e-3, reg = 1e-5, num_iters = 100, 
             batch_size = 200, print_flag = False):
        """
        Train linear SVM classifier using SGD
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
          consisting of num_train samples each of dimension D
        - y: A numpy array of shape (num_train,) contain the training labels,
          where y[i] is the label of X[i], y[i] = c, 0 <= c <= C
        - learning rate: (float) learning rate for optimization
        - reg: (float) regularization strength
        - num_iters: (integer) numbers of steps to take when optimization
        - batch_size: (integer) number of training examples to use at each step
        - print_flag: (boolean) If true, print the progress during optimization
        Outputs:
        - loss_history: A list containing the loss at each training iteration
        """

        loss_history = []
        num_train = X.shape[0]
        dim = X.shape[1]
        num_classes = np.max(y) + 1

        # Initialize W
        if self.W == None:
            self.W = 0.001 * np.random.randn(dim, num_classes)

        # iteration and optimization
        for t in range(num_iters):
            idx_batch = np.random.choice(num_train, batch_size, replace=True)
            X_batch = X[idx_batch]
            y_batch = y[idx_batch]
            loss, dW = self.loss_vectorized(X_batch, y_batch, reg)
            loss_history.append(loss)
            self.W += -learning_rate * dW

            if print_flag and t%100 == 0:
                print('iteration %d / %d: loss %f' % (t, num_iters, loss))

        return loss_history

    def predict(self, X):
        """
        Use the trained weights of linear SVM to predict data labels
        Inputs:
        - X: A numpy array of shape (num_train, D) contain the training data
        Outputs:
        - y_pred: A numpy array, predicted labels for the data in X
        """

        y_pred = np.zeros(X.shape[0])
        scores = np.dot(X, self.W)
        y_pred = np.argmax(scores, axis=1)

        return y_pred        

4. Gradient Check

Define loss function

代码语言:javascript
复制
def loss_naive1(X, y, W, reg):
    """
    Structured SVM loss function, naive implementation (with loops).
    Inputs:
    - X: A numpy array of shape (num_train, D) contain the training data
    consisting of num_train samples each of dimension D
    - y: A numpy array of shape (num_train,) contain the training labels,
    where y[i] is the label of X[i]
    - W: A numpy array of shape (D, C) contain the weights
    - reg: float, regularization strength
    Return:
    - loss: the loss value between predict value and ground truth
    - dW: gradient of W
    """

    # Initialize loss and dW
    loss = 0.0
    dW = np.zeros(W.shape)

    # Compute the loss and dW
    num_train = X.shape[0]
    num_classes = W.shape[1] 
    for i in range(num_train):
        scores = np.dot(X[i], W)
        for j in range(num_classes):
            if j == y[i]:
                margin = 0
            else:
                margin = scores[j] - scores[y[i]] + 1    # delta = 1
                if margin > 0:
                    loss += margin
                    dW[:,j] += X[i].T
                    dW[:,y[i]] += -X[i].T
    # Divided by num_train
    loss /= num_train
    dW /= num_train

    # Add regularization
    loss += 0.5 * reg * np.sum(W * W)
    dW += reg * W

    return loss, dW

def loss_vectorized1(X, y, W, reg):
    """
    Structured SVM loss function, naive implementation (with loops).
    Inputs:
    - X: A numpy array of shape (num_train, D) contain the training data
    consisting of num_train samples each of dimension D
    - y: A numpy array of shape (num_train,) contain the training labels,
    where y[i] is the label of X[i]
    - W: A numpy array of shape (D, C) contain the weights
    - reg: (float) regularization strength
    Outputs:
    - loss: the loss value between predict value and ground truth
    - dW: gradient of W
    """

    # Initialize loss and dW
    loss = 0.0
    dW = np.zeros(W.shape)

    # Compute the loss
    num_train = X.shape[0]
    scores = np.dot(X, W)
    correct_score = scores[range(num_train), list(y)].reshape(-1, 1)    # delta = -1
    margin = np.maximum(0, scores - correct_score + 1)
    margin[range(num_train), list(y)] = 0
    loss = np.sum(margin) / num_train + 0.5 * reg * np.sum(W * W)

    # Compute the dW
    num_classes = W.shape[1]
    mask = np.zeros((num_train, num_classes))
    mask[margin > 0] = 1
    mask[range(num_train), list(y)] = 0
    mask[range(num_train), list(y)] = -np.sum(mask, axis=1)
    dW = np.dot(X.T, mask)
    dW = dW / num_train + reg * W

    return loss, dW

Gradient check

代码语言:javascript
复制
from gradient_check import grad_check_sparse
import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001

# Without regularization
loss, dW = loss_naive1(X_val, y_val, W, 0)
f = lambda W: loss_naive1(X_val, y_val, W, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, dW)

# With regularization
loss, dW = loss_naive1(X_val, y_val, W, 5e1)
f = lambda W: loss_naive1(X_val, y_val, W, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, dW)
代码语言:javascript
复制
numerical: -8.059958 analytic: -8.059958, relative error: 6.130237e-11
numerical: -7.522645 analytic: -7.522645, relative error: 3.601909e-11
numerical: 14.561062 analytic: 14.561062, relative error: 1.571510e-11
numerical: -0.636243 analytic: -0.636243, relative error: 7.796694e-10
numerical: -11.414171 analytic: -11.414171, relative error: 1.604323e-11
numerical: 12.628817 analytic: 12.628817, relative error: 1.141476e-11
numerical: -9.642228 analytic: -9.642228, relative error: 2.188900e-11
numerical: 9.577850 analytic: 9.577850, relative error: 6.228243e-11
numerical: -5.397272 analytic: -5.397272, relative error: 4.498183e-11
numerical: 12.226704 analytic: 12.226704, relative error: 5.457544e-11
numerical: 14.054682 analytic: 14.054682, relative error: 2.879899e-12
numerical: 0.444995 analytic: 0.444995, relative error: 4.021959e-10
numerical: 0.838312 analytic: 0.838312, relative error: 6.444258e-10
numerical: -1.160105 analytic: -1.160105, relative error: 5.096445e-10
numerical: -3.007970 analytic: -3.007970, relative error: 2.017297e-10
numerical: -2.135929 analytic: -2.135929, relative error: 2.708692e-10
numerical: -16.032463 analytic: -16.032463, relative error: 1.920198e-11
numerical: 5.949340 analytic: 5.949340, relative error: 2.138613e-11
numerical: -2.278258 analytic: -2.278258, relative error: 6.415350e-11
numerical: 8.316738 analytic: 8.316738, relative error: 1.901469e-11

5. Stochastic Gradient Descent

代码语言:javascript
复制
svm = LinearSVM()
loss_history = svm.train(X_train, y_train, learning_rate = 1e-7, reg = 2.5e4, num_iters = 2000, 
             batch_size = 200, print_flag = True)
代码语言:javascript
复制
iteration 0 / 2000: loss 403.810828
iteration 100 / 2000: loss 239.004354
iteration 200 / 2000: loss 145.934813
iteration 300 / 2000: loss 90.564682
iteration 400 / 2000: loss 56.126912
iteration 500 / 2000: loss 36.482452
iteration 600 / 2000: loss 23.327738
iteration 700 / 2000: loss 15.934542
iteration 800 / 2000: loss 11.508418
iteration 900 / 2000: loss 8.614351
iteration 1000 / 2000: loss 7.845596
iteration 1100 / 2000: loss 6.068847
iteration 1200 / 2000: loss 6.017030
iteration 1300 / 2000: loss 5.407498
iteration 1400 / 2000: loss 5.282425
iteration 1500 / 2000: loss 5.760450
iteration 1600 / 2000: loss 4.764250
iteration 1700 / 2000: loss 5.395108
iteration 1800 / 2000: loss 5.025213
iteration 1900 / 2000: loss 4.858321
代码语言:javascript
复制
# Plot the loss_history
plt.plot(loss_history)
plt.xlabel('Iteration number')
plt.ylabel('Loss value')
plt.show()
这里写图片描述
这里写图片描述
代码语言:javascript
复制
# Use svm to predict
# Training set
y_pred = svm.predict(X_train)
num_correct = np.sum(y_pred == y_train)
accuracy = np.mean(y_pred == y_train)
print('Training correct %d/%d: The accuracy is %f' % (num_correct, X_train.shape[0], accuracy))

# Test set
y_pred = svm.predict(X_test)
num_correct = np.sum(y_pred == y_test)
accuracy = np.mean(y_pred == y_test)
print('Test correct %d/%d: The accuracy is %f' % (num_correct, X_test.shape[0], accuracy))
代码语言:javascript
复制
Training correct 18789/49000: The accuracy is 0.383449
Test correct 375/1000: The accuracy is 0.375000

6. Validation and Test

Cross-validation

代码语言:javascript
复制
learning_rates = [1.4e-7, 1.5e-7, 1.6e-7]
regularization_strengths = [8000.0, 9000.0, 10000.0, 11000.0, 18000.0, 19000.0, 20000.0, 21000.0]

results = {}
best_lr = None
best_reg = None
best_val = -1   # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.

for lr in learning_rates:
    for reg in regularization_strengths:
        svm = LinearSVM()
        loss_history = svm.train(X_train, y_train, learning_rate = lr, reg = reg, num_iters = 2000)
        y_train_pred = svm.predict(X_train)
        accuracy_train = np.mean(y_train_pred == y_train)
        y_val_pred = svm.predict(X_val)
        accuracy_val = np.mean(y_val_pred == y_val)
        if accuracy_val > best_val:
            best_lr = lr
            best_reg = reg
            best_val = accuracy_val
            best_svm = svm
        results[(lr, reg)] = accuracy_train, accuracy_val
        print('lr: %e reg: %e train accuracy: %f val accuracy: %f' %
              (lr, reg, results[(lr, reg)][0], results[(lr, reg)][1]))
print('Best validation accuracy during cross-validation:\nlr = %e, reg = %e, best_val = %f' %
      (best_lr, best_reg, best_val))     
代码语言:javascript
复制
lr: 1.400000e-07 reg: 8.000000e+03 train accuracy: 0.388633 val accuracy: 0.412000
lr: 1.400000e-07 reg: 9.000000e+03 train accuracy: 0.394918 val accuracy: 0.396000
lr: 1.400000e-07 reg: 1.000000e+04 train accuracy: 0.392388 val accuracy: 0.396000
lr: 1.400000e-07 reg: 1.100000e+04 train accuracy: 0.388265 val accuracy: 0.379000
lr: 1.400000e-07 reg: 1.800000e+04 train accuracy: 0.387408 val accuracy: 0.386000
lr: 1.400000e-07 reg: 1.900000e+04 train accuracy: 0.381673 val accuracy: 0.372000
lr: 1.400000e-07 reg: 2.000000e+04 train accuracy: 0.377531 val accuracy: 0.394000
lr: 1.400000e-07 reg: 2.100000e+04 train accuracy: 0.372735 val accuracy: 0.370000
lr: 1.500000e-07 reg: 8.000000e+03 train accuracy: 0.393837 val accuracy: 0.400000
lr: 1.500000e-07 reg: 9.000000e+03 train accuracy: 0.393735 val accuracy: 0.382000
lr: 1.500000e-07 reg: 1.000000e+04 train accuracy: 0.395735 val accuracy: 0.381000
lr: 1.500000e-07 reg: 1.100000e+04 train accuracy: 0.396469 val accuracy: 0.398000
lr: 1.500000e-07 reg: 1.800000e+04 train accuracy: 0.382694 val accuracy: 0.392000
lr: 1.500000e-07 reg: 1.900000e+04 train accuracy: 0.382429 val accuracy: 0.395000
lr: 1.500000e-07 reg: 2.000000e+04 train accuracy: 0.374265 val accuracy: 0.390000
lr: 1.500000e-07 reg: 2.100000e+04 train accuracy: 0.378327 val accuracy: 0.377000
lr: 1.600000e-07 reg: 8.000000e+03 train accuracy: 0.392551 val accuracy: 0.382000
lr: 1.600000e-07 reg: 9.000000e+03 train accuracy: 0.391184 val accuracy: 0.378000
lr: 1.600000e-07 reg: 1.000000e+04 train accuracy: 0.387939 val accuracy: 0.410000
lr: 1.600000e-07 reg: 1.100000e+04 train accuracy: 0.388224 val accuracy: 0.389000
lr: 1.600000e-07 reg: 1.800000e+04 train accuracy: 0.378102 val accuracy: 0.383000
lr: 1.600000e-07 reg: 1.900000e+04 train accuracy: 0.380918 val accuracy: 0.383000
lr: 1.600000e-07 reg: 2.000000e+04 train accuracy: 0.378224 val accuracy: 0.383000
lr: 1.600000e-07 reg: 2.100000e+04 train accuracy: 0.376204 val accuracy: 0.380000
Best validation accuracy during cross-validation:
lr = 1.400000e-07, reg = 8.000000e+03, best_val = 0.412000
代码语言:javascript
复制
# Visualize the cross-validation results
import math

x_scatter = [math.log10(x[0]) for x in results]
y_scatter = [math.log10(x[1]) for x in results]

# Plot training accuracy
plt.figure(figsize=(10,10))
make_size = 100
colors = [results[x][0] for x in results]
plt.subplot(2, 1, 1)
plt.scatter(x_scatter, y_scatter, make_size, c = colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('Training accuracy')

# Plot validation accuracy
colors = [results[x][1] for x in results]
plt.subplot(2, 1, 2)
plt.scatter(x_scatter, y_scatter, make_size, c = colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('Validation accuracy')
plt.show()
这里写图片描述
这里写图片描述

Test

代码语言:javascript
复制
# Use the best svm to test
y_test_pred = best_svm.predict(X_test)
num_correct = np.sum(y_test_pred == y_test)
accuracy = np.mean(y_test_pred == y_test)
print('Test correct %d/%d: The accuracy is %f' % (num_correct, X_test.shape[0], accuracy))
代码语言:javascript
复制
Test correct 369/1000: The accuracy is 0.369000

Visualize the weights for each class

代码语言:javascript
复制
W = best_svm.W[:-1, :]    # delete the bias
W = W.reshape(32, 32, 3, 10)
W_min, W_max = np.min(W), np.max(W)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
    plt.subplot(2, 5, i+1)
    imgW = 255.0 * ((W[:, :, :, i].squeeze() - W_min) / (W_max - W_min))
    plt.imshow(imgW.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])
plt.show()
这里写图片描述
这里写图片描述

参考文献:

linear classification notes

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年02月06日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. Load the CIFAR10 data
    • Show some CIFAR10 images
      • Subsample the data for more efficient code execution
      • 2. Preprocessing
        • Reshape the images data into rows
          • Subtract the mean images
            • Append the bias dimension of ones
            • 3. Define a linear SVM classifier
            • 4. Gradient Check
              • Define loss function
                • Gradient check
                • 5. Stochastic Gradient Descent
                • 6. Validation and Test
                  • Cross-validation
                    • Test
                      • Visualize the weights for each class
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档