前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >torch07:RNN--MNIST识别和自己数据集

torch07:RNN--MNIST识别和自己数据集

作者头像
MachineLP
发布2019-05-26 16:48:16
1.1K0
发布2019-05-26 16:48:16
举报
文章被收录于专栏:小鹏的专栏小鹏的专栏

版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。 https://cloud.tencent.com/developer/article/1435814

MachineLP的Github(欢迎follow):https://github.com/MachineLP

MachineLP的博客目录:小鹏的博客目录

本小节使用torch搭建RNN模型,训练和测试:

(1)定义模型超参数:rnn的输入,rnn隐含单元,rnn层数,迭代次数、批量大小、学习率。

(2)定义训练数据,加餐部分是使用自己的数据集:(可参考:https://cloud.tencent.com/developer/article/1997099

(3)定义模型(定义需要的RNN结构)。

(4)定义损失函数,选用适合的损失函数。

(5)定义优化算法(SGD、Adam等)。

(6)保存模型。

---------------------------------我是可爱的分割线---------------------------------

代码部分:

代码语言:javascript
复制
# coding=utf-8

import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# 判定GPU是否存在 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定义超参数
# RNN的输入是一个序列,sequence_length为序列长度,input_size为序列每个长度。
sequence_length = 28
input_size = 28
# 定义RNN隐含单元的大小。
hidden_size = 128
# 定义rnn的层数
num_layers = 2
# 识别的类别数量
num_classes = 10
# 批的大小
batch_size = 100
# 定义迭代次数
num_epochs = 2
# 定义学习率
learning_rate = 0.01

# MNIST 数据集  
train_dataset = torchvision.datasets.MNIST(root='./data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='./data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

# 构建数据管道, 使用自己的数据集请参考:https://blog.csdn.net/u014365862/article/details/80506147 
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

# 定义RNN(LSTM)
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, num_classes)
    
    def forward(self, x):
        # Set initial hidden and cell states 
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) 
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
        
        # Forward propagate LSTM
        out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size)
        
        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])
        return out

# 定义模型 
model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)


# 损失函数和优化算法
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型 
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        
        # 前向传播+计算loss  
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 后向传播+调整参数 
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每100个batch打印一次数据    
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 模型测试部分    
# 测试阶段不需要计算梯度,注意  
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 

# 保存模型参数   
torch.save(model.state_dict(), 'model.ckpt')

加餐1:在自己数据集上使用:

其中,train.txt中的数据格式:

gender/0male/0(2).jpg 1

gender/0male/0(3).jpeg 1

gender/0male/0(1).jpg 0

test.txt中的数据格式如下:

gender/0male/0(3).jpeg 1

gender/0male/0(1).jpg 0

gender/1female/1(6).jpg 1

代码部分:

代码语言:javascript
复制
# coding=utf-8
import torch     
import torch.nn as nn    
import torchvision    
from torch.utils.data import Dataset, DataLoader        
from torchvision import transforms, utils     
from PIL import Image  


# 判定GPU是否存在 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定义超参数
# RNN的输入是一个序列,sequence_length为序列长度,input_size为序列每个长度。
sequence_length = 28*3
input_size = 28
# 定义RNN隐含单元的大小。
hidden_size = 128
# 定义rnn的层数
num_layers = 2
# 识别的类别数量
num_classes = 10
# 批的大小
batch_size = 16
# 定义迭代次数
num_epochs = 2
# 定义学习率
learning_rate = 0.01

def default_loader(path):        
    # 注意要保证每个batch的tensor大小时候一样的。        
    return Image.open(path).convert('RGB')        
        
class MyDataset(Dataset):        
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):        
        fh = open(txt, 'r')        
        imgs = []        
        for line in fh:        
            line = line.strip('\n')        
            # line = line.rstrip()        
            words = line.split(' ')        
            imgs.append((words[0],int(words[1])))        
        self.imgs = imgs        
        self.transform = transform        
        self.target_transform = target_transform        
        self.loader = loader        
            
    def __getitem__(self, index):        
        fn, label = self.imgs[index]        
        img = self.loader(fn)        
        if self.transform is not None:        
            img = self.transform(img)        
        return img,label        
            
    def __len__(self):        
        return len(self.imgs)        
        
def get_loader(dataset='train.txt', crop_size=128, image_size=28, batch_size=2, mode='train', num_workers=1):        
    """Build and return a data loader."""        
    transform = []        
    if mode == 'train':        
        transform.append(transforms.RandomHorizontalFlip())        
    transform.append(transforms.CenterCrop(crop_size))        
    transform.append(transforms.Resize(image_size))        
    transform.append(transforms.ToTensor())        
    transform.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))        
    transform = transforms.Compose(transform)        
    train_data=MyDataset(txt=dataset, transform=transform)        
    data_loader = DataLoader(dataset=train_data,        
                                  batch_size=batch_size,        
                                  shuffle=(mode=='train'),        
                                  num_workers=num_workers)        
    return data_loader        
# 注意要保证每个batch的tensor大小时候一样的。        
# data_loader = DataLoader(train_data, batch_size=2,shuffle=True)        
train_loader = get_loader('train.txt', batch_size=batch_size)        
print(len(train_loader))        
test_loader = get_loader('test.txt', batch_size=batch_size)        
print(len(test_loader))    

# 定义RNN(LSTM)
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, num_classes)
    
    def forward(self, x):
        # Set initial hidden and cell states 
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) 
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
        
        # Forward propagate LSTM
        out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size)
        
        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])
        return out

# 定义模型 
model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)


# 损失函数和优化算法
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型 
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        
        # 前向传播+计算loss  
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 后向传播+调整参数 
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每100个batch打印一次数据    
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 模型测试部分    
# 测试阶段不需要计算梯度,注意  
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 

# 保存模型参数   
torch.save(model.state_dict(), 'model.ckpt')

加餐2:BIRNN

代码语言:javascript
复制
# coding=utf-8
import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# 判定GPU是否存在 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定义超参数  
# RNN的输入是一个序列,sequence_length为序列长度,input_size为序列每个长度。
sequence_length = 28
input_size = 28
# 定义RNN隐含单元的大小。 
hidden_size = 128
# 定义rnn的层数
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003

# MNIST 数据集
train_dataset = torchvision.datasets.MNIST(root='./data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='./data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

# 构建数据管道, 使用自己的数据集请参考:https://blog.csdn.net/u014365862/article/details/80506147  
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

# 定义RNN(LSTM) 
class BiRNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(BiRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size*2, num_classes)  # 2 for bidirection
    
    def forward(self, x):
        # Set initial states
        h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 2 for bidirection 
        c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)
        
        # Forward propagate LSTM
        out, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size*2)
        
        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])
        return out

# 定义模型
model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)

# 损失函数和优化算法 
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    
# 训练模型 
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        
        # 前向传播+计算loss    
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 后向传播+调整参数   
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每100个batch打印一次数据      
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 模型测试部分      
# 测试阶段不需要计算梯度,注意 
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 

# 保存模型参数
torch.save(model.state_dict(), 'model.ckpt')

---------------------------------我是可爱的分割线---------------------------------

总结:

本节使用RNN训练MNIST识别、自己数据的识别。

上面加餐部分需要生成自己的txt文件(数据+标签),可以参考这个,自己以前调试用的:https://github.com/MachineLP/py_workSpace/blob/master/g_img_path.py

torch系列:

  1. torch01:torch基础
  2. torch02:logistic regression--MNIST识别
  3. torch03:linear_regression
  4. torch04:全连接神经网络--MNIST识别和自己数据集
  5. torch05:CNN--MNIST识别和自己数据集
  6. torch06:ResNet--Cifar识别和自己数据集
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年06月02日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档