前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >重磅︱R+NLP:text2vec包——New 文本分析生态系统 No.1(一,简介)

重磅︱R+NLP:text2vec包——New 文本分析生态系统 No.1(一,简介)

作者头像
悟乙己
发布2019-05-26 22:03:02
9990
发布2019-05-26 22:03:02
举报
文章被收录于专栏:素质云笔记

版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/53161863

———————————————————————————

词向量的表示主流的有两种方式,一种当然是耳熟能详的google的word2vec,还有一类就是GloVe。那么前面一类有三个开源的包,后面这一类我倒是看到得不多,恰好是在我关注了许久的一个包里面有,它就是text2vec啦。该包提供了一个强大API接口,能够很好地处理文本信息。

本包是由C++写的,流处理器可以让内存得到更好的利用,一些地方是用RcppParallel包进行并行化加乘,同时兼容各个系统的服务器。如果没有并行的地方,大家也可以自己用foreach包来自己加速。

这个生态系统也是笔者见到过的,R语言里面最好、最全面的包了,包含了很多类型的算法以及成熟的应用。而且包的介绍十分详尽,很棒!! 系列文章:

重磅︱R+NLP:text2vec包——New 文本分析生态系统 No.1(一,简介) R+NLP︱text2vec包——BOW词袋模型做监督式情感标注案例(二,情感标注)

R+NLP︱text2vec包——四类文本挖掘相似性指标 RWMD、cosine、Jaccard 、Euclidean (三,相似距离)

———————————————————————————————— 该包的四大功能

1、快速文本表达方式。文档可以以多种方式表达,单独词组、n-grams、特征hashing化的方法等。

2、GloVe词向量表达

3、LDA主题模型,LDA(latent dirichlet allocation)、LSA(latent sematic analysis),那么这个就是继lda、topicmodels两大包之后,第三个有主题模型功能的包啦~前面两个包可以参考我的另外博客:

R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)

4、距离计算。cosine距离、jaccard距离、Relaxed word mover's distance(在最近的Kaggle比赛中很有效)、Euclidean距离。 ———————————————————————————————————— 一、快速文本表达

文档可以以多种方式表达,单独词组、n-grams、特征hashing化的方法等。 一般来说文本分析的步骤有以下三个步骤: 1、第一步:把内容表达成为文档-词组矩阵(document-term矩阵,DTM)或者词组共现矩阵(term-co-occurrence矩阵,TCM),换言之第一步就是在文档之上创造一个词条地图。 2、第二步:找个模型在DTM上进行拟合,有LDA、文本分类等 3、第三步:在验证集上进行验证 ———————————————————————————————— 二、GloVe词向量表达

在Tomas Mikolov等人开发了word2vec词向量表达工具之后,一大批衍生方法由此崛起与发展,其中一种斯坦福大学的GloVe(Global Vectors for word representation)就是一篇非常好的文献。 主要是在词语共现矩阵下因式分解。经过代码优化GloVe性能提高了2-3倍,是通过单精度浮点运算。 ———————————————————————————————————————— 三、LDA主题模型

LDA主题模型是基于lda包开发的(Jonathan Chang),在下次发布的时候该主题模型的引擎就会嵌入到lda包之中,目前text2vec开发模型要比lda快2倍,比topicmodels包快10倍。LSA模型是基于irlab包。 —————————————————————————————————————— 四、距离计算

  • Cosine
  • Jaccard
  • Relaxed Word Mover's Distance
  • Euclidean

还在研究中,后续加更...

——————————————————————————————————————

参考文献:

1、重磅︱文本挖掘深度学习之word2vec的R语言实现

2、语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)

3、自然语言处理︱简述四大类文本分析中的“词向量”(文本词特征提取)

4、NLP︱句子级、词语级以及句子-词语之间相似性(相关名称:文档特征、词特征、词权重)

5、NLP︱R语言实现word2vec(词向量)经验总结(消除歧义、词向量的可加性)

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016年11月14日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档