Python快速实战机器学习(4) 逻辑回归

引言

机器学习是如今人工智能时代背景下一个重要的领域。这个“Python快速实战机器学习”系列,用Python代码实践机器学习里面的算法,旨在理论和实践同时进行,快速掌握知识。

前面课程:

Python快速实战机器学习(1) 教材准备

Python快速实战机器学习(2) 数据预处理

Python快速实战机器学习(3) 线性分类器

概要

1、认识sigmoid函数,了解其性质;

2、学会推导逻辑回归的损失函数以及梯度;

3、学会用sklearn应用逻辑回归进行分类任务。

sigmoid函数

逻辑回归本来是一个回归(regression)模型,它也可以被用来作为一个分类模型,它易于实现,是工业界最常用的分类模型之一。

逻辑回归作为一个概率模型,为了解释其背后的原理,我们先引入一个概念:几率或者叫做概率。相信大家对这个概念非常熟悉了。比如一个人得某种病有一个概率;今天是否下雨也有一个概率。逻辑回归正是要试图还原这个概率。

逻辑回归的重点就是sigmoid函数,我们来认识一下logistic函数长什么样子:

import matplotlib.pyplot as plt
import numpy as np

def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-z))

z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)

plt.plot(z, phi_z)
plt.axvline(0.0, color='k')
plt.ylim(-0.1, 1.1)
plt.xlabel('z')
plt.ylabel('$\phi (z)$')

# y axis ticks and gridline
plt.yticks([0.0, 0.5, 1.0])
ax = plt.gca()
ax.yaxis.grid(True)

plt.tight_layout()
# plt.savefig('./figures/sigmoid.png', dpi=300)
plt.show()

可以看到sigmoid函数的取值范围正是0到1,目的是模拟一个事件的发生概率,我们用一张图来准确描述逻辑分类器的建模过程:

有了样本的预测概率,再得到样本的类别值就很简单:当概率大于0.5,那么它就是属于类别1;当概率小于0.5,那么它就不属于这个类别而是另外一个类别。

学习参数权重

对逻辑回归模型有了基本认识后,我们回到机器学习的核心问题,怎样学习参数。我们求解损失函数最小时的权重参数,同样,对于逻辑回归,我们也需要定义损失函数。

在这之前我们定义一个似然(likelihood)函数:

其中y(i)是真实数据的类别,分别是0和1。这个函数的意思是预测结果和真实结果“有多像”,如果预测结果和真实结果一样,那结果就是1,否则会因为预测结果和真实结果的不同程度增大而减小。

逻辑回归的损失函数就是对似然函数取对数(log-likelihood):

接下来,我们可以运用梯度下降等优化算法来求解最大化log-likelihood时的参数。

我们将有n个数据的目标函数写出来:

别看他很复杂,其实由于y(i)只能取两个值:0和1,所以我们将它展开来就非常简单了:

我们将这个表达式用图画出来:

def cost_1(z):
    return - np.log(sigmoid(z))


def cost_0(z):
    return - np.log(1 - sigmoid(z))

z = np.arange(-10, 10, 0.1)
phi_z = sigmoid(z)

c1 = [cost_1(x) for x in z]
plt.plot(phi_z, c1, label='J(w) if y=1')

c0 = [cost_0(x) for x in z]
plt.plot(phi_z, c0, linestyle='--', label='J(w) if y=0')

plt.ylim(0.0, 5.1)
plt.xlim([0, 1])
plt.xlabel('$\phi$(z)')
plt.ylabel('J(w)')
plt.legend(loc='best')
plt.tight_layout()
# plt.savefig('./figures/log_cost.png', dpi=300)
plt.show()

对于蓝线,如果逻辑回归预测结果正确,类别为1,则损失为0;对于橘线,如果逻辑回归预测正确,类别为0,则损失为0。如果预测错误,则损失趋向正无穷。

逻辑回归训练

考虑到sklearn中提供了高度优化过的逻辑回归实现,同时也支持多类别分类,我们就不自己实现了而是直接调用sklearn函数来训练模型:

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
import warnings


def versiontuple(v):
    return tuple(map(int, (v.split("."))))


def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):

    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], 
                    y=X[y == cl, 1],
                    alpha=0.6, 
                    c=cmap(idx),
                    edgecolor='black',
                    marker=markers[idx], 
                    label=cl)

    # highlight test samples
    if test_idx:
        # plot all samples
        if not versiontuple(np.__version__) >= versiontuple('1.9.0'):
            X_test, y_test = X[list(test_idx), :], y[list(test_idx)]
            warnings.warn('Please update to NumPy 1.9.0 or newer')
        else:
            X_test, y_test = X[test_idx, :], y[test_idx]

        plt.scatter(X_test[:, 0],
                    X_test[:, 1],
                    c='',
                    alpha=1.0,
                    edgecolor='black',
                    linewidths=1,
                    marker='o',
                    s=55, label='test set')
from sklearn import datasets
import numpy as np

iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target


from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=0)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(C=1000.0, random_state=0)
lr.fit(X_train_std, y_train)

plot_decision_regions(X_combined_std, y_combined,
                      classifier=lr, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/logistic_regression.png', dpi=300)
plt.show()

我们顺便把上节课的内容也复习了一遍。运行结果:

本文分享自微信公众号 - Python与机器学习之路(gh_39aead19f756)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-10-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智能计算时代

「首席架构师推荐」文本挖掘软件列表

文本挖掘,也称为文本数据挖掘,大致相当于文本分析,是指从文本中获取高质量信息的过程。高质量的信息通常是通过设计模式和趋势通过统计模式学习等手段获得的。

15530
来自专栏腾讯大讲堂的专栏

腾讯大数据星火计划技术沙龙 对外报名正式启动!

导语:腾讯大数据举办星火计划技术沙龙为广大大数据爱好者提供线下交流活动机会,技术沙龙第一期将于10月13日在深圳腾讯大厦举办,为您揭秘海量机器学习之道与Ang...

9430
来自专栏数据分析1480

推荐收藏 | 统计学常用的数据分析方法大总结!

描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分...

16640
来自专栏计算机视觉战队

麻省理工HAN Lab | ProxylessNAS自动为目标任务和硬件定制高效CNN结构(文末论文及源码)

今天分享的这篇文章主要解决NAS代理机制下无法搜索到全局最优的问题,改进搜索策略,一定程度上解决资源消耗的问题。其主要是基于DARTs改的,那就先谈谈DARTs...

7920
来自专栏AI科技评论

ICCV 2019 Oral | 期望最大化注意力网络 EMANet 详解

本文转自知乎,作者立夏之光。AI科技评论获授权转载,如需转载请联系原作者。原文链接:https://dwz.cn/3BFMz8pW

15720
来自专栏Datawhale专栏

吴恩达:关于机器学习职业生涯以及阅读论文的一些建议

既然你已经在阅读这篇文章了,那么你可能已经知道该领域的先驱之一Andrew Ng是谁,并且你可能对会对他关于如何建立机器学习职业生涯的建议感兴趣。

11030
来自专栏Python编程 pyqt matplotlib

利用PCA来降维

想象这样一种场景:我们通过电视直播观看足球比赛,电视屏幕大概有200万像素,假设我们关注的是任意时刻足球的位置。在这一场景中,人们实时地将屏幕上的百万级像素转换...

9620
来自专栏腾讯高校合作

腾讯人工智能师资培训通知 | 人工智能人才培养

为推动中国人工智能行业的发展,促进专业人才培养,以及推进人工智能领域一级学科建设,联盟联合腾讯公司定于2019年10-11月期间在华北、华南、西北三大区域开展...

20320
来自专栏卡尼慕

Generative Adversarial Networks

上一篇讲述了VAEs(变分自编码器),那么这次继续学习一下另一个生成模型——GANs。这里建议如果没有看VAEs的请点击传送门:,因为有所关联,所以如果直接看这...

10760
来自专栏CDA数据分析师

你跳宅舞的样子很专业:不,这都是AI合成的结果

想展示自己的完美舞姿吗?你现在只需要一段别人跳舞的视频,和自己的一张照片。最近,来自上海科技大学和腾讯 AI Lab 的新研究着实让很多人跃跃欲试。

11640

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励