专栏首页数据派THU李航老师《统计学习方法》及相关资源最全汇总

李航老师《统计学习方法》及相关资源最全汇总

来源:字节AI

本文约1800字,建议阅读5分钟

本文为你分享李航老师《统计学习方法》及相关资料。

标签:学习资源

关注数据派THU(DatapiTHU)后台回复“20200618”获取《统计学习方法》相关资料

李航:毕业于日本京都大学电气电子工程系,日本东京大学获得计算机科学博士学位。1990年至2001年就职于日本NEC 公司中央研究所,任研究员,2001年至2012年就职于微软亚洲研究院,任高级研究员与主任研究员。2012年至2017年就职于华为技术有限公司诺亚方舟实验室,任首席科学家、主任。现任字节跳动科技有限公司人工智能实验室总监,北京大学、南京大学客座教授,IEEE 会士,ACM 杰出科学家,CCF 高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著,并在顶级国际学术会议和顶级国际学术期刊上发表过120多篇学术论文,拥有40项授权美国专利。

李航老师编写的《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与支持向量机、提升方法、em算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。

《统计学习方法》可以说是机器学习的入门宝典,许多机器学习培训班、互联网企业的面试、笔试题目,很多都参考这本书。

今天我们将李航老师经典的机器学习资源进行汇总,并整理后提供下载。

1. 《统计学习方法》(第二版)

《统计学习方法》第一版于 2012年出版,讲述了统计机器学习方法,主要是一些常用的监督学习方法。第二版增加了一些常用的无监督学习方法,由此本书涵盖了传统统计机器学习方法的主要内容。

第二版课程目录:

第1篇 监督掌习

第1章统计学习及监督学习概论 第2章感知机 第3章k近邻法 第4章朴素贝叶斯法 第5章决策树 第6章逻辑斯谛回归与优选熵模型 第7章支持向量机 第8章提升方法 第9章EM算法及其推广 第10章隐马尔可夫模型 第11章条件随机场 第12章监督学习方法总结

第2篇无监督学习

第13章无监督学习概论 第14章聚类方法 第15章奇异值分解 第16章主成分分析 第17章潜在语义分析 第18章概率潜在语义分析 第19章马尔可夫链蒙特卡罗法

第20章 潜在狄利克雷分配

第21章 PageRank算法

第22章 无监督学习方法总结

附录A 梯度下降法

附录B 牛顿法和拟牛顿法

附录C 拉格朗日对偶性

附录D 矩阵的基本子空间

附录E KL散度的定义和狄利克雷分布的性质

我们可以看到:《统计学习方法(第2版)》分为监督学习和无监督学习两篇,全面系统地介绍了统计学习的主要方法。包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场,以及聚类方法、奇异值分解、主成分分析、潜在语义分析、概率潜在语义分析、马尔可夫链蒙特卡罗法、潜在狄利克雷分配和PageRank算法等。

《统计学习方法(第2版)》比第一版更全面,而且价格也不高(不到100元还有打折)。这本书是统计机器学习及相关课程的教学参考书,适用于高等院校文本数据挖掘、信息检索及自然语言处理等专业的大学生、研究生,也可供计算机应用等专业的研发人员参考。

出于版权保护,本文不提供电子书下载,请大家购买正版。

2. 《统计学习方法》的代码实现

《统计学习方法》这本书,附件里并没有代码实现,于是许多研究者复现了里面算法的代码,并放在github里分享,这里介绍几个比较热门的《统计学习方法》代码实现的项目:

1.https://github.com/fengdu78/lihang-code (标星:10.2k+)

这个仓库由黄海广博士整理,第一版的监督学习方法已经整理完毕(更新完十二章),仓库的主要内容以Jupyter Notebook格式展现,同时介绍书上的主要算法及公式推导。

2.https://github.com/WenDesi/lihang_book_algorithm (标星:4.2k+)

这个仓库不介绍任何机器学习算法的原理,只是将《统计学习方法》中每一章的算法用我自己的方式实现一遍。除了李航书上的算法外,还实现了一些其他机器学习的算法,这个仓库用Python代码实现。(更新完十二章)

3.https://github.com/Dod-o/Statistical-Learning-Method_Code (标星:3.7k+)

这个仓库力求每行代码都有注释,重要部分注明公式来源。具体会追求下方这样的代码,学习者可以照着公式看程序,让代码有据可查。(更新完十章)

代码截图,注释完整且规范

4.https://github.com/SmirkCao/Lihang (标星:3.1k+)

这个仓库用markdown编写,前十二章更新完毕,后面部分也更新了大部分,没有代码,但是,公式推导相当全。

本文分享自微信公众号 - 数据派THU(DatapiTHU)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-06-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 从起源到具体算法,这篇深度学习综述论文送给你

    来源:机器之心 本文为大家从最基础的角度来为大家解读什么是深度学习,以及深度学习的一些前沿发展。 自 2012 年多伦多大学 Alex Krizhevsky ...

    数据派THU
  • 手把手教你估算深度神经网络的最优学习率(附代码&教程)

    来源:机器之心 作者:Pavel Surmenok 学习率(learning rate)是调整深度神经网络最重要的超参数之一,本文作者Pavel Surmen...

    数据派THU
  • 资源 | 《统计学习方法》的Python 3.6复现,实测可用

    本文为你分享一个 GitHub 项目,其用 Python 复现了课程内容,并提供代码实现和课件。

    数据派THU
  • 如果我不擅长数学,如何开始学习机器学习

    在“理解数学”之前他们不能在所从事学科中取得卓越的成就,这就是他们认为数学家比他们聪明的地方。

    和风
  • 解读技术 |学习率及其如何改善深度学习算法

    本文的内容基于fast.in的工作人员撰写的文章[1]~[3]、[5],并在其基础上提炼了其中的主要内容。如果您想了解更多,请参考原文。

    用户7623498
  • 机器学习简介

    标题: 机器学习定义 人工智能、机器学习、深度学习的关系 机器学习的学习类别 数据(特征)的种类 几个空间的概念 机器学习的三要素 深度学习的兴起引领了人工智能...

    企鹅号小编
  • 机器学习精华,10问10答

    给新人的学习建议 1. 你建议其他领域的人(比如机械工程)来学习机器学习吗? Ian Goodfellow:当然了!我最崇拜的Geoffrey Hinton在...

    BestSDK
  • 【免费】5本机器学习电子书推荐(附简介与下载)

    【新智元导读】 这五本精心挑选的电子书,可以帮助你更全面地了解机器学习,掌握进入这个行业必备的技能。 需要注意的是,虽然有关机器学习的免费电子书成千上万,而且其...

    新智元
  • 《机器学习》笔记-计算学习理论(12)

    如今机器学习和深度学习如此火热,相信很多像我一样的普通程序猿或者还在大学校园中的同学,一定也想参与其中。不管是出于好奇,还是自身充电,跟上潮流,我觉得都值得试一...

    机器学习算法工程师
  • 易忽略的强化学习知识之基础知识及MDP

    推荐阅读时间:8min~12min 主要内容:容易忽略的强化学习知识之基础知识及MDP 由于我对RL的期望挺大,很看好它的前景,故之后应该会写下一个系列的强化学...

    企鹅号小编

扫码关注云+社区

领取腾讯云代金券