前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Code】关于 GCN,我有三种写法

【Code】关于 GCN,我有三种写法

作者头像
阿泽 Crz
发布2020-07-21 11:29:22
2.1K0
发布2020-07-21 11:29:22
举报

本篇文章主要基于 DGL 框架用三种不同的方式来实现图卷积神经网络。手机看可能不太方便,可以点击阅读原文,移步到知乎上看(但是我忘了加 = =)。

1. DGL

DGL(Deep Graph Library)框架是由纽约大学和 AWS 工程师共同开发的开源框架,旨在为大家提供一个在图上进行深度学习的工具,帮助大家更高效的实现算法。

用现有的一些框架比如 TensorFlow、Pytorch、MXNet 等实现图神经网络模型都不太方便,同样现有框架实现图神经网络模型的速度不够快。

DGL 框架设计理念主要在于将图神经网络看作是消息传递的过程,每一个节点会发出它自己的消息,也会接收来自其它节点的消息。然后在得到所有信息之后做聚合,计算出节点新的表示。原有的深度学习框架都是进行张量运算,但是图很多时候并不能直接表示成一个完整的张量,需要手动补零,这其实很麻烦,不高效。

DGL 是基于现有框架,帮助用户更容易实现图神经网络模型。DGL 现在主要是以消息传递的接口作为核心,同时提供图采样以及批量处理图的接口。

关于 DGL 就不再进行过多介绍,感兴趣的同学可以去官网(http://dgl.ai/)了解。

2. Prepare

import torch
import time
import math
import dgl
import numpy as np
import torch.nn as nn
from dgl.data import citation_graph as citegrh
from dgl import DGLGraph
import dgl.function as fn
import networkx as nx
import torch.nn.functional as F

from dgl.nn import GraphConv
# from dgl.nn.pytorch import GraphConv
# from dgl.nn.pytorch.conv import GraphConv

这里有三种导入方法,建议用第一种,因为 DGL 的开发同学设计了一个机制,会自动 detect 用了什么 beckend,从而适配对应的 backend 的 api。

print(torch.__version__)
print(dgl.__version__)
print(nx.__version__)
1.4.0
0.4.3
2.3

3. GCN

3.1 First version

DGL 的第一种写法是利用 DGL 预定义的图卷积模块 GraphConv 来实现的。

GCN 的数学公式如下:

h_i^{(l+1)} = \sigma(b^{(l)} + \sum_{j\in\mathcal{N}(i)}\frac{1}{c_{ij}}h_j^{(l)}W^{(l)})

其中,

\mathcal{N}(i)

为节点的邻居集合,

c_{ij}=\sqrt{|\mathcal{N}(i)|}\sqrt{|\mathcal{N}(j)|}

表示节点度的平方根的乘积,用于归一化数据,

sigma

为激活函数

GraphConv 模型参数初始化参考 tkipf 大佬的原始实现,其中

W^{(l)}

使用 Glorot uniform 统一初始化,并将偏差初始化为零。

简单介绍下 Glorot 均匀分布(uniform)

Glorot 均匀分布,也叫 Xavier 均匀分布,该方法源于 2010 年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》。其核心思想在于:为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。基于这个目标,权重 W 的方差需要满足

\forall i \; Var[W^i] = \frac{2}{n_{i}+n_{i+1}}

,我们知道均匀分布的方差为:

Var=\frac{(b-a)^2}{12}

。所以我们可以初始化 W 为 Xavier 均匀分布:

W \sim U[-\frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}]

(具体证明见论文)

class GCN(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.g = g
        self.layers = nn.ModuleList()
        # input layer
        self.layers.append(GraphConv(in_feats, n_hidden, activation=activation))
        # output layer
        for i in range(n_layers - 1):
            self.layers.append(GraphConv(n_hidden, n_hidden, activation=activation))
        # output layer
        self.layers.append(GraphConv(n_hidden, n_classes))
        self.dropout = nn.Dropout(p=dropout)
    
    def forward(self, features):
        h = features
        for i, layers in enumerate(self.layers):
            if i!=0:
                h = self.dropout(h)
            h = layers(self.g, h)
        return h

3.2 Second version

3.2.1 ndata

DGL 的第二种写法:使用用户自定义的 Message 和 Reduce 函数

ndata 是 DGL 的一个特殊的语法,可以用于赋值(获得)某些节点的特征:

x = tourch.randn(10, 3)
g.ndata['x'] = x

如果指定某些节点的特征,可以进行切片操作:

g.ndata['x'][0] = th.zeros(1, 3)
g.ndata['x'][[0, 1, 2]] = th.zeros(3, 3)
g.ndata['x'][th.tensor([0, 1, 2])] = th.randn((3, 3))

当然也可以获得边的特征:

g.edata['w'] = th.randn(9, 2)

# Access edge set with IDs in integer, list, or integer tensor
g.edata['w'][1] = th.randn(1, 2)
g.edata['w'][[0, 1, 2]] = th.zeros(3, 2)
g.edata['w'][th.tensor([0, 1, 2])] = th.zeros(3, 2)

# You can get the edge ids by giving endpoints, which are useful for accessing the features.
g.edata['w'][g.edge_id(1, 0)] = th.ones(1, 2)                   # edge 1 -> 0
g.edata['w'][g.edge_ids([1, 2, 3], [0, 0, 0])] = th.ones(3, 2)  # edges [1, 2, 3] -> 0
# Use edge broadcasting whenever applicable.
g.edata['w'][g.edge_ids([1, 2, 3], 0)] = th.ones(3, 2)          # edges [1, 2, 3] -> 0

3.2.2 UDFs

在 DGL 中,通过用户自定义的函数(User-defined functions,UDFs)来实现消息传递和节点特征变换。

可以利用 Edge UDFs 来定义一个消息(Message)函数,其功能在于基于边传递消息。具体实现如下:

def gcn_msg(edge):
    msg = edge.src['h'] * edge.src['norm']
    return {'m': msg}

Edge UDFs 需要传入一个 edge 参数,其中 edge 有三个属性:src、dst、data,分别对应源节点特征、目标节点特征和边特征。

我们的 Message 函数,是从源节点向目标节点传递,所以只考虑源节点的特征。

节点中的 'norm' 用于归一化,具体计算方式后面会说。

对于每个节点来说,可能过会收到很多个源节点传过来的消息,所以可以将这些消息存储在邮箱中(mailbox)。

我们那再来定义一个聚合(Reduce)函数。

消息传递完后,每个节点都要处理下他们的“信箱”(mailbox),Reduce 函数的作用就是用来处理节点“信箱”的消息的。

Reduce 函数是一个 Node UDFs。

Node UDFs 接收一个 node 的参数,并且 node 有两个属性 data 和 mailbox,分别为节点的特征和用来接收信息的“信箱”。

def gcn_reduce(node):
    # 需要注意:消息存放在 mailbox 的第二个维上,第一维是消息的数量
    accum = torch.sum(node.mailbox['m'], dim=1) * node.data['norm']
    return {'h': accum}

Messge UDF 作用于边上,而 Reduce UDF 作用于节点上。两者的关系如下:

从左到右开始看,源节点通过 message 函数传递节点特征,并传递到目标节点的 Mailbox 中,在触发 Node UDF 时(这里为 Reduce 函数),Mailbox 将被清空。

上图中我们还可以看到作用于节点的有两个函数:Apply 函数和 Reduce 函数。

Reduce 函数我们上面介绍过了,那这个 Apply 函数是什么呢?

Apply 函数为节点更新的函数,可以用于「初始化参数」「对节点特征的进行非线形变换」

初始化参数:我们刚刚指出,参数分布服从 Glorot 均匀分布,所以要给节点加偏置的话,我们也需要将其初始化为并使其服从 Glorot 均匀分布,如下面代码中的 reset_parameters 函数

非线形变换:GCN 中每一层进行传递后,节点可能需要进行非线形变换,如下面代码中 forward 函数

class NodeApplyModule(nn.Module):
    def __init__(self, out_feats, activation=None, bias=True):
        super(NodeApplyModule, self).__init__()
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_feats))
        else:
            self.bias = None
        self.activation = activation
        self.reset_parameters()

    def reset_parameters(self):
        if self.bias is not None:
            stdv = 1. / math.sqrt(self.bias.size(0))
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, nodes):
        h = nodes.data['h']
        if self.bias is not None:
            h = h + self.bias
        if self.activation:
            h = self.activation(h)
        return {'h': h}

有了 Message 函数、Reduce 函数和节点的更新函数后,我们需要将其连贯起来:

g.update_all(message_func='default', 
             reduce_func='default', 
             apply_node_func='default') 

这个函数可以用于发送信息并更新所有节点,是 send() 和 recv() 函数的一个简单组合

3.2.3 GCNLayer

有了这些后,我们便可以定义 GCNLayer 了:

class GCNLayer(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 bias=True):
        super(GCNLayer, self).__init__()
        self.g = g
        self.weight = nn.Parameter(torch.Tensor(in_feats, out_feats))
        if dropout:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = 0.
        self.node_update = NodeApplyModule(out_feats, activation, bias)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)

    def forward(self, h):
        if self.dropout:
            h = self.dropout(h)
        self.g.ndata['h'] = torch.mm(h, self.weight)
        self.g.update_all(gcn_msg, gcn_reduce, self.node_update)
        h = self.g.ndata.pop('h')
        return h

然后我们把 GCNLayer 拼接在一起组成 GCN 网络

class GCN(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.layers = nn.ModuleList()
        # input layer
        self.layers.append(GCNLayer(g, in_feats, n_hidden, activation, dropout))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(GCNLayer(g, n_hidden, n_hidden, activation, dropout))
        # output layer
        self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout))

    def forward(self, features):
        h = features
        for layer in self.layers:
            h = layer(h)
        return h

3.3 Third version

DGL 的第三种写法:使用 DGL 的内置(builtin)函数

由于 Messge 和 Reduce 函数使用的比较频繁,所以 DGL 了内置函数以方便使用,我们把刚刚的 Message 和 Reduce 函数改变为内置函数有:

  • dgl.function.copy_src(src, out):Message 函数其实就是把源节点的特征拷贝到目标节点,所以可以换用内置的 copy_src 函数。
  • dgl.function.sum(msg, out):Reduce 函数其实就是聚合节点 Mailbox 中的消息,所以可以换用内置的 sum 函数。
class GCNLayer(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 out_feats,
                 activation,
                 dropout,
                 bias=True):
        super(GCNLayer, self).__init__()
        self.g = g
        self.weight = nn.Parameter(torch.Tensor(in_feats, out_feats))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_feats))
        else:
            self.bias = None
        self.activation = activation
        if dropout:
            self.dropout = nn.Dropout(p=dropout)
        else:
            self.dropout = 0.
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, h):
        if self.dropout:
            h = self.dropout(h)
        h = torch.mm(h, self.weight)
        # normalization by square root of src degree
        h = h * self.g.ndata['norm']
        self.g.ndata['h'] = h
        self.g.update_all(fn.copy_src(src='h', out='m'),
                          fn.sum(msg='m', out='h'))
        h = self.g.ndata.pop('h')
        # normalization by square root of dst degree
        h = h * self.g.ndata['norm']
        # bias
        if self.bias is not None:
            h = h + self.bias
        if self.activation:
            h = self.activation(h)
        return h

  • 这里的做了两次的标准化,对应 GCN 公式中的
c_{ij}=\sqrt{|\mathcal{N}(i)|}\sqrt{|\mathcal{N}(j)|}

  • 这里把 Node 的 Apply 函数的功能合并到 GCNLayer 中了。
class GCN(nn.Module):
    def __init__(self,
                 g,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super(GCN, self).__init__()
        self.layers = nn.ModuleList()
        # input layer
        self.layers.append(GCNLayer(g, in_feats, n_hidden, activation, 0.))
        # hidden layers
        for i in range(n_layers - 1):
            self.layers.append(GCNLayer(g, n_hidden, n_hidden, activation, dropout))
        # output layer
        self.layers.append(GCNLayer(g, n_hidden, n_classes, None, dropout))

    def forward(self, features):
        h = features
        for layer in self.layers:
            h = layer(h)
        return h

4.Train

dropout=0.5
gpu=-1
lr=0.01
n_epochs=200
n_hidden=16  # 隐藏层节点的数量
n_layers=2  # 输入层 + 输出层的数量
weight_decay=5e-4  # 权重衰减
self_loop=True  # 自循环
# cora 数据集

data = citegrh.load_cora()
features = torch.FloatTensor(data.features)
labels = torch.LongTensor(data.labels)
train_mask = torch.BoolTensor(data.train_mask)
val_mask = torch.BoolTensor(data.val_mask)
test_mask = torch.BoolTensor(data.test_mask)

in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()

# 构建 DGLGraph
g = data.graph

if self_loop:
    g.remove_edges_from(nx.selfloop_edges(g))
    g.add_edges_from(zip(g.nodes(), g.nodes()))
g = DGLGraph(g)

这里大家可能会有些疑惑:为什么要先移除自环?然后再加上自环。

这个主要是为了防止原本数据集中有一部分的自环,如果不去掉直接加上自环的话,会导致一些节点有两个自环,而有些只有一个。

# 加载 GPU
if gpu < 0:
    cuda = False
else:
    cuda = True
    torch.cuda.set_device(gpu)
    features = features.cuda()
    labels = labels.cuda()
    train_mask = train_mask.cuda()
    val_mask = val_mask.cuda()
    test_mask = test_mask.cuda()
# 归一化,依据入度进行计算
degs = g.in_degrees().float()
norm = torch.pow(degs, -0.5)
norm[torch.isinf(norm)] = 0
if cuda:
    norm = norm.cuda()
g.ndata['norm'] = norm.unsqueeze(1)
# 创建一个 GCN 的模型,可以选择上面的任意一个进行初始化
model = GCN(g,
            in_feats,
            n_hidden,
            n_classes,
            n_layers,
            F.relu,
            dropout)

if cuda:
    model.cuda()
# 采用交叉熵损失函数和 Adam 优化器
loss_fcn = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(),
                             lr=lr,
                             weight_decay=weight_decay)
# 定义一个评估函数
def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)
# 训练,并评估
dur = []
for epoch in range(n_epochs):
    model.train()
    t0 = time.time()
    # forward
    logits = model(features)
    loss = loss_fcn(logits[train_mask], labels[train_mask])

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    dur.append(time.time() - t0)

    if epoch % 10 == 0:
        acc = evaluate(model, features, labels, val_mask)
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(),
                                             acc, n_edges / np.mean(dur) / 1000))

print()
acc = evaluate(model, features, labels, test_mask)
print("Test accuracy {:.2%}".format(acc))

Epoch 00000 | Time(s) 0.0178 | Loss 1.9446 | Accuracy 0.2100 | ETputs(KTEPS) 594.54
Epoch 00010 | Time(s) 0.0153 | Loss 1.7609 | Accuracy 0.3533 | ETputs(KTEPS) 689.33
Epoch 00020 | Time(s) 0.0150 | Loss 1.5518 | Accuracy 0.5633 | ETputs(KTEPS) 703.47
Epoch 00030 | Time(s) 0.0146 | Loss 1.2769 | Accuracy 0.5867 | ETputs(KTEPS) 721.28
Epoch 00040 | Time(s) 0.0143 | Loss 1.0785 | Accuracy 0.6567 | ETputs(KTEPS) 740.36
Epoch 00050 | Time(s) 0.0140 | Loss 0.8881 | Accuracy 0.7067 | ETputs(KTEPS) 754.21
Epoch 00060 | Time(s) 0.0138 | Loss 0.6994 | Accuracy 0.7533 | ETputs(KTEPS) 763.21
Epoch 00070 | Time(s) 0.0137 | Loss 0.6249 | Accuracy 0.7800 | ETputs(KTEPS) 770.54
Epoch 00080 | Time(s) 0.0137 | Loss 0.5048 | Accuracy 0.7800 | ETputs(KTEPS) 772.31
Epoch 00090 | Time(s) 0.0136 | Loss 0.4457 | Accuracy 0.7867 | ETputs(KTEPS) 778.78
Epoch 00100 | Time(s) 0.0135 | Loss 0.4167 | Accuracy 0.7800 | ETputs(KTEPS) 782.25
Epoch 00110 | Time(s) 0.0134 | Loss 0.3389 | Accuracy 0.8000 | ETputs(KTEPS) 786.52
Epoch 00120 | Time(s) 0.0134 | Loss 0.3777 | Accuracy 0.8100 | ETputs(KTEPS) 789.85
Epoch 00130 | Time(s) 0.0133 | Loss 0.3307 | Accuracy 0.8133 | ETputs(KTEPS) 792.00
Epoch 00140 | Time(s) 0.0133 | Loss 0.2542 | Accuracy 0.7933 | ETputs(KTEPS) 794.13
Epoch 00150 | Time(s) 0.0133 | Loss 0.2937 | Accuracy 0.8000 | ETputs(KTEPS) 795.73
Epoch 00160 | Time(s) 0.0132 | Loss 0.2944 | Accuracy 0.8333 | ETputs(KTEPS) 797.04
Epoch 00170 | Time(s) 0.0132 | Loss 0.2161 | Accuracy 0.8167 | ETputs(KTEPS) 799.74
Epoch 00180 | Time(s) 0.0132 | Loss 0.1972 | Accuracy 0.8200 | ETputs(KTEPS) 801.31
Epoch 00190 | Time(s) 0.0131 | Loss 0.2339 | Accuracy 0.8167 | ETputs(KTEPS) 802.92

Test accuracy 80.40%

5.Conclusion

以上便是本教程的全部,当然还有其他实现的方法,比如说,直接利用矩阵相乘来进行迭代。

6.References

  1. DGL Github
  2. DGL 官方文档
  3. 《深度学习——Xavier初始化方法》
  4. 《DGL 作者答疑!关于 DGL 你想知道的都在这里-周金晶》
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-05-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 阿泽的学习笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. DGL
  • 2. Prepare
  • 3. GCN
    • 3.1 First version
      • 3.2 Second version
        • 3.2.1 ndata
        • 3.2.2 UDFs
        • 3.2.3 GCNLayer
      • 3.3 Third version
      • 4.Train
      • 5.Conclusion
      • 6.References
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档