Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >kubectl top 命令解析

kubectl top 命令解析

作者头像
我是阳明
发布于 2020-06-15 10:11:03
发布于 2020-06-15 10:11:03
31.6K00
代码可运行
举报
文章被收录于专栏:k8s技术圈k8s技术圈
运行总次数:0
代码可运行

原文链接:http://www.xuyasong.com/?p=1781

一. 前言

kubectl top 可以很方便地查看node、pod 的实时资源使用情况:如CPU、内存。这篇文章会介绍其数据链路和实现原理,同时借 kubectl top 阐述 k8s 中的监控体系,窥一斑而知全豹。最后会解释常见的一些问题:

  • kubectl top 为什么会报错?
  • kubectl top node 怎么计算,和节点上直接 top 有什么区别?
  • kubectl top pod 怎么计算,包含 pause 吗?
  • kubectl top pod 和exec 进入 pod 后看到的 top 不一样?
  • kubectl top pod 和 docker stats得到的值为什么不同?

以下命令的运行环境为:

  • k8s 1.8
  • k8s 1.13

二. 使用

kubectl top 是基础命令,但是需要部署配套的组件才能获取到监控值

  • 1.8以下:部署 heapter
  • 1.8以上:部署 metric-server

kubectl top node: 查看node的使用情况

kubectl top pod: 查看 pod 的使用情况

不指定pod 名称,则显示命名空间下所有 pod,–containers可以显示 pod 内所有的container

指标含义:

  • 和 k8s中 的 request、limit 一致,CPU单位100m=0.1 内存单位1Mi=1024Ki
  • pod 的内存值是其实际使用量,也是做 limit 限制时判断 oom 的依据。pod的使用量等于其所有业务容器的总和,不包括 pause 容器,值等于 cadvisr中的 container_memory_working_set_bytes 指标
  • node 的值并不等于该 node 上所有 pod 值的总和,也不等于直接在机器上运行 top 或 free 看到的值

三. 实现原理

3.1 数据链路

kubectl top 、 k8s dashboard 以及 HPA 等调度组件使用的数据是一样,数据链路如下:

使用 heapster 时:apiserver 会直接将 metric 请求通过 proxy 的方式转发给集群内的 hepaster 服务。

而使用 metrics-server 时:apiserver 是通过 /apis/metrics.k8s.io/ 的地址访问 metric

这里可以对比下 kubect get pod 时的日志:

3.2 metric api

可以发现,heapster 使用的是 proxy 转发,而 metric-server 和普通 pod都是使用 api/xx 的资源接口,heapster采用的这种 proxy 方式是有问题的:

  • proxy 只是代理请求,一般用于问题排查,不够稳定,且版本不可控
  • heapster 的接口不能像 apiserver 一样有完整的鉴权以及 client 集成,两边都维护的话代价高,如 generic apiserver
  • pod 的监控数据是核心指标(HPA调度),应该和 pod 本身拥有同等地位,即 metric 应该作为一种资源存在,如 metrics.k8s.io 的形式,称之为 Metric Api

于是官方从 1.8 版本开始逐步废弃 heapster,并提出了上边 Metric api 的概念,而 metrics-server 就是这种概念下官方的一种实现,用于从 kubelet获取指标,替换掉之前的 heapster

3.3 kube-aggregator

有了 metrics-server 组件,采集到了需要的数据,也暴露了接口,但走到这一步和 heapster 其实没有区别,最关键的一步就是如何将打到 apiserver的 /apis/metrics.k8s.io 请求转发给 metrics-server 组件?解决方案就是:kube-aggregator

kube-aggregator 是对 apiserver 的有力扩展,它允许 k8s 的开发人员编写一个自己的服务,并把这个服务注册到 k8s 的 api 里面,即扩展 API,metric-server 其实在 1.7版本就已经完成了,只是在等 kube-aggregator 的出现。

kube-aggregator 是 apiserver 中的实现,有些 k8s 版本默认没开启,你可以加上这些配置来开启,他的核心功能是动态注册、发现汇总、安全代理

如 metric-server 注册 pod 和 node 时:

3.4 监控体系

在提出 metric api 的概念时,官方也提出了新的监控体系,监控资源被分为了2种:

  • Core metrics(核心指标):从 Kubelet、cAdvisor 等获取度量数据,再由metrics-server 提供给 Dashboard、HPA 控制器等使用。
  • Custom Metrics(自定义指标):由 Prometheus Adapter 提供 API custom.metrics.k8s.io,由此可支持任意Prometheus采集到的指标。

核心指标只包含 node 和 pod 的 cpu、内存等,一般来说,核心指标作 HPA 已经足够,但如果想根据自定义指标:如请求 qps/5xx 错误数来实现 HPA,就需要使用自定义指标了。

目前 Kubernetes 中自定义指标一般由 Prometheus 来提供,再利用 k8s-prometheus-adpater 聚合到 apiserver,实现和核心指标同样的效果。

3.5 kubelet

前面提到,无论是 heapster 还是 metric-server,都只是数据的中转和聚合,两者都是调用的 kubelet 的 api 接口获取的数据,而 kubelet 代码中实际采集指标的是 cadvisor 模块,你可以在 node 节点访问 10255 端口(1.11版本过后是10250端口)获取监控数据:

  • Kubelet Summary metrics: 127.0.0.1:10255/metrics,暴露 node、pod 汇总数据
  • Cadvisor metrics: 127.0.0.1:10255/metrics/cadvisor,暴露 container 维度数据

示例,容器的内存使用量:

Kubelet 虽然提供了 metric 接口,但实际监控逻辑由内置的 cAdvisor 模块负责,演变过程如下:

  • 从k8s 1.6开始,kubernetes 将 cAdvisor 开始集成在kubelet中,不需要单独配置
  • 从k8s 1.7开始,Kubelet metrics API 不再包含 cadvisor metrics,而是提供了一个独立的 API 接口来做汇总
  • 从 k8s 1.12 开始,cadvisor 监听的端口在k8s中被删除,所有监控数据统一由 Kubelet 的 API 提供

到这里为止,k8s 范围内的监控体系就结束了。

3.6 cadvisor

cadvisor 由谷歌开源,使用 Go 开发,cadvisor 不仅可以搜集一台机器上所有运行的容器信息,包括 CPU 使用情况、内存使用情况、网络吞吐量及文件系统使用情况,还提供基础查询界面和 http 接口,方便其他组件进行数据抓取。在K8S 中集成在 Kubelet 里作为默认启动项,k8s 官方标配。

cadvisor 拿到的数据结构示例:

核心逻辑是通过 new 出来的 memoryStorage 以及 sysfs 实例,创建一个manager 实例,manager 的 interface 中定义了许多用于获取容器和 machine 信息的函数

cadvisor的指标解读:cgroup-v1(https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt)

cadvisor 获取指标时实际调用的是 runc/libcontainer 库,而 libcontainer 是对 cgroup 文件 的封装,即 cadvsior 也只是个转发者,它的数据来自于cgroup 文件。

3.7 cgroup

cgroup 文件中的值是监控数据的最终来源,如

  • mem usage 的值,来自于 /sys/fs/cgroup/memory/docker/[containerId]/memory.usage_in_bytes
  • 如果没限制内存,Limit=machine_mem,否则来自于 /sys/fs/cgroup/memory/docker/[id]/memory.limit_in_bytes
  • 内存使用率=memory.usage_in_bytes/memory.limit_in_bytes

一般情况下,cgroup文件夹下的内容包括CPU、内存、磁盘、网络等信息:

如 memory 下的几个常用的指标含义:

memory.stat 中的信息是最全的:

原理到这里结束,这里解释下最开始的 kubectl top 的几个问题:

四. 问题

4.1 kubectl top 为什么会报错

一般情况下 top 报错有以下几种,可以 kubectl top pod -v=10看到具体的调用日志:

  • 没有部署 heapster 或者 metric-server,或者 pod 运行异常,可以排查对应 pod 日志
  • 要看的 pod 刚刚建出来,还没来得及采集指标,报 not found 错误,默认 1 分钟
  • 以上两种都不是,可以检查下 kubelet 的 10255 端口是否开放,默认情况下会使用这个只读端口获取指标,也可以在 heapster 或 metric-server 的配置中增加证书,换成 10250 认证端口

4.2 kubectl top pod 内存怎么计算,包含 pause容器吗

每次启动 pod,都会有一个 pause 容器,既然是容器就一定有资源消耗(一般在 2-3M 的内存),cgroup 文件中,业务容器和 pause 容器都在同一个 pod的文件夹下。

但 cadvisor 在查询 pod 的内存使用量时,是先获取了 pod 下的container列表,再逐个获取container的内存占用,不过这里的 container 列表并没有包含 pause,因此最终 top pod 的结果也不包含 pause 容器

pod 的内存使用量计算

kubectl top pod 得到的内存使用量,并不是 cadvisor 中的 container_memory_usage_bytes,而是 container_memory_working_set_bytes,计算方式为:

  • container_memory_usage_bytes = container_memory_rss + container_memory_cache + kernel memory
  • container_memory_working_set_bytes = container_memory_usage_bytes – total_inactive_file(未激活的匿名缓存页)

container_memory_working_set_bytes 是容器真实使用的内存量,也是 limit限制时的 oom 判断依据。

cadvisor 中的 container_memory_usage_bytes 对应 cgroup 中的 memory.usage_in_bytes 文件,但 container_memory_working_set_bytes 并没有具体的文件,他的计算逻辑在 cadvisor 的代码中,如下:

同理,node 的内存使用量也是 container_memory_working_set_bytes。

4.3 kubectl top node 怎么计算,和节点上直接 top 有什么区别

kubectl top node 得到的 cpu 和内存值,并不是节点上所有 pod 的总和,不要直接相加。top node 是机器上 cgroup 根目录下的汇总统计

在机器上直接 top 命令看到的值和 kubectl top node 不能直接对比,因为计算逻辑不同,如内存,大致的对应关系是(前者是机器上 top,后者是 kubectl top):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
rss + cache = (in)active_anon + (in)active_file

4.4 kubectl top pod 和 exec 进入 pod 后看到的 top 不一样

top 命令的差异和上边一致,无法直接对比,同时,就算你对 pod 做了 limit 限制,pod 内的 top 看到的内存和 cpu 总量仍然是机器总量,并不是pod 可分配量

  • 进程的RSS为进程使用的所有物理内存(file_rss+anon_rss),即Anonymous pages+Mapped apges(包含共享内存)
  • cgroup RSS为(anonymous and swap cache memory),不包含共享内存。两者都不包含file cache

4.5 kubectl top pod 和 docker stats得到的值为什么不同?

docker stats dockerID 可以看到容器当前的使用量:

如果你的 pod 中只有一个 container,你会发现 docker stats 值不等于kubectl top 的值,既不等于 container_memory_usage_bytes,也不等于container_memory_working_set_bytes。

因为docker stats 和 cadvisor 的计算方式不同,总体值会小于 kubectl top:计算逻辑是:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
docker stats = container_memory_usage_bytes - container_memory_cache

五. 后记

一般情况下,我们并不需要时刻关心 node 或 pod 的使用量,因为有集群自动扩缩容(cluster-autoscaler)和 pod 水平扩缩容(HPA)来应对这两种资源变化,资源指标的意义更适合使用 prometheus 来持久化 cadvisor 的数据,用于回溯历史或者发送报警。

其他补充:

  • 虽然 kubectl top help 中显示支持 Storage,但直到 1.16 版本仍然不支持
  • 1.13 之前需要 heapster,1.13 以后需要 metric-server,这部分 kubectl top help 的输出 有误,里面只提到了heapster
  • k8s dashboard 中的监控图默认使用的是 heapster,切换为 metric-server后数据会异常,需要多部署一个metric-server-scraper 的 pod 来做接口转换,具体参考 pr:https://github.com/kubernetes/dashboard/pull/3504

六. 参考资料

  • https://github.com/kubernetes-sigs/metrics-server/issues/193
  • https://github.com/kubernetes/kubernetes/pull/83247
  • https://www.cnblogs.com/liuhongru/p/11215447.html
  • https://github.com/DirectXMan12/k8s-prometheus-adapter/blob/master/docs/walkthrough.md#quantity-values
  • https://github.com/fabric8io/kansible/blob/master/vendor/k8s.io/kubernetes/docs/design/resources.md
  • https://erdong.site/linux/system/computer-unit-conversion.html
  • https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu
  • https://access.redhat.com/documentation/zh-cn/red_hat_enterprise_linux/6/html/resource_management_guide/sec-memory
  • https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
  • https://www.cnblogs.com/liuhongru/p/11215447.html
  • https://github.com/moby/moby/issues/10824
  • https://github.com/docker/cli/pull/80
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-04-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 k8s技术圈 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
读Flink源码谈设计:图的抽象与分层
前阵子组里的小伙伴问我“为什么Flink从我们的代码到真正可执行的状态,要经过这么多个graph转换?这样做有什么好处嘛?”我早期看到这里的设计时的确有过相同的疑惑,当时由于手里还在看别的东西,查阅过一些资料后就翻页了。如今又碰到了这样的问题,不妨就在这篇文章中好好搞清楚。
泊浮目
2023/12/27
2470
全网最全系列 | Flink原理+知识点总结(4万字、41知识点,66张图)
Flink四大基石分别是:Time (时间)、Window(窗口)、State (状态)、Checkpoint(检查点)。
大数据老哥
2022/04/07
5.2K0
全网最全系列 | Flink原理+知识点总结(4万字、41知识点,66张图)
2021年大数据Flink(九):Flink原理初探
它扮演的是集群管理者的角色,负责调度任务、协调 checkpoints、协调故障恢复、收集 Job 的状态信息,并管理 Flink 集群中的从节点 TaskManager。
Lansonli
2021/10/11
1.2K0
Flink面试通关手册「160题升级版」
主要是当Flink开启Checkpoint的时候,会往Source端插入一条barrir,然后这个barrir随着数据流向一直流动,当流入到一个算子的时候,这个算子就开始制作checkpoint,制作的是从barrir来到之前的时候当前算子的状态,将状态写入状态后端当中。然后将barrir往下流动,当流动到keyby 或者shuffle算子的时候,例如当一个算子的数据,依赖于多个流的时候,这个时候会有barrir对齐,也就是当所有的barrir都来到这个算子的时候进行制作checkpoint,依次进行流动,当流动到sink算子的时候,并且sink算子也制作完成checkpoint会向jobmanager 报告 checkpoint n 制作完成。
大数据真好玩
2021/07/07
2.8K0
一文搞定 Flink Job 提交全流程
前面,我们已经分析了 一文搞定 Flink 消费消息的全流程 、写给大忙人看的 Flink Window原理 还有 一文搞定 Flink Checkpoint Barrier 全流程 等等,接下来也该回归到最初始的时候,Flink Job 是如何提交的。
shengjk1
2020/07/13
2.6K0
Flink面试通关手册
2019 年是大数据实时计算领域最不平凡的一年,2019 年 1 月阿里巴巴 Blink (内部的 Flink 分支版本)开源,大数据领域一夜间从 Spark 独步天下走向了两强争霸的时代。Flink 因为其天然的流式计算特性以及强大的处理性能成为炙手可热的大数据处理框架。
大数据真好玩
2019/12/09
1.4K0
Flink面试通关手册
Flink架构
Flink 是一个分布式系统,需要有效分配和管理计算资源才能执行流应用程序。它集成了所有常见的集群资源管理器,如Hadoop YARN,但也可以设置作为独立集群甚至库运行。
JavaEdge
2024/08/03
1260
Flink架构
Spark Streaming VS Flink
本文从编程模型、任务调度、时间机制、Kafka 动态分区的感知、容错及处理语义、背压等几个方面对比 Spark Stream 与 Flink,希望对有实时处理需求业务的企业端用户在框架选型有所启发。本文篇幅较长,建议先收藏~
美图数据技术团队
2018/08/22
1.8K0
Spark Streaming VS Flink
flink系列(9)-flink任务提交流程分析
连续写了几天的flink StreamGraph的代码,今天闲来说一下flink的启动,今天主要说的是本地模式(LocalStreamEnvironment)启动
yiduwangkai
2019/09/17
2.2K0
flink系列(9)-flink任务提交流程分析
Flink 面试题
Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。并且 Flink 提供了数据分布、容错机制以及资源管理等核心功能。
Tim在路上
2020/08/05
1.4K0
全网第一 | Flink学习面试灵魂40问答案!
Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等功能。基于流执行引擎,Flink提供了诸多更高抽象层的API以便用户编写分布式任务:
大数据真好玩
2019/09/17
10.6K0
全网第一 | Flink学习面试灵魂40问答案!
那个男人竟然不会Flink的CheckPoint机制
这里已经是Flink的第三篇原创啦。第一篇《Flink入门教程》讲解了Flink的基础和相关概念,第二篇《背压原理》讲解了什么是背压,在Flink背压大概的流程是怎么样的。
Java3y
2020/12/31
8760
那个男人竟然不会Flink的CheckPoint机制
Flink 核心组件原理 多图剖析
TaskManager 是工作节点,负责数据交换,跑多个线程的 task,执行任务。
kk大数据
2020/12/29
2.1K0
Flink 核心组件原理 多图剖析
Flink架构、原理与部署测试
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能。
Florian
2018/08/21
3.1K0
【推荐系统算法实战】Flink 架构及其工作原理
分布式系统需要解决:分配和管理在集群的计算资源、处理配合、持久和可访问的数据存储、失败恢复。Fink专注分布式流处理。
一个会写诗的程序员
2019/12/30
1.8K0
【推荐系统算法实战】Flink 架构及其工作原理
学习Flink,看这篇就够了
批处理在大数据世界有着悠久的历史。早期的大数据处理基本上是批处理的天下。批处理主要操作大容量的静态数据集,并在计算过程完成之后返回结果。所以批处理面对的数据集通常具有以下特征:
saintyyu
2021/11/22
3.2K1
学习Flink,看这篇就够了
Flink教程(30)- Flink VS Spark[通俗易懂]
Spark Streaming 运行时的角色(standalone 模式)主要有:
全栈程序员站长
2022/11/16
1.5K0
Flink教程(30)- Flink VS Spark[通俗易懂]
一文搞定 Flink Checkpoint Barrier 全流程
上文中,我们一起了解了 一文搞定 Flink 消费消息的全流程,接下来呢,我们一起来看一下 checkpoint barrier 的全流程。
shengjk1
2020/06/21
1.3K0
Flink 源码解读系列 | Flink的Job启动Driver端
整个Flink的Job启动是通过在Driver端通过用户的Envirement的execute()方法将用户的算子转化成StreamGraph
大数据真好玩
2020/09/07
6660
Flink架构
Flink整体由JobManager和TaskManager组成,遵循主从设计原则,JobManager为Master节点,TaskManager为worker节点,组件之间通信是借助Akka Framework;
神秘的寇先森
2020/02/19
1.2K0
相关推荐
读Flink源码谈设计:图的抽象与分层
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档