前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >第10节卷积神经网络CNN及其numpy复现

第10节卷积神经网络CNN及其numpy复现

作者头像
三更两点
发布2022-01-06 14:35:54
3340
发布2022-01-06 14:35:54
举报

文章目录

引子

  • BP算法容易陷入局部最优,其次BP的图像不能直接输入到网络中.
  • 梯度消失,BP仅仅适用于3层以内,多层了容易出现梯度消失.
  • 猫眼睛具有局部感受野,其次大脑皮层具有分层处理.
  • Hinton教授提出
    • 具有多个隐含层的神经网络具有更好的特征学习能力,每一层特征的抽取都是前一层的抽象,学习到的特征能更好的刻画数据.也恰恰符合生物大脑的认知.
    • 通过逐层初始化的逐层预训练,可以找到一个接近最优的神经网络的权值,然后通过微调对整个网络进行优化训练,从而大幅减少训练多层神经网络所需要的时间.

CNN基础

  • 卷积神经网络包含了由卷积层和子采样层构成的特征抽取器.一个卷积层包含若干个特征平面(featureMap)每个特征平面由一些矩形排列的神经元组成.统一特征平面的神经元共享权值.共享权值就是卷积核.
  • 卷积核的作用是减少网络各个层之间的连接,同事降低了过拟合的风险.子采样也叫池化,通常有均值采样和最大值采样.
  • 卷积网络:输入层+n个卷积层和池化层组成+全连接的感知机

局部感知野

  1. 图像像素之间是邻近像素相关性比较大,越远的像素相关性越小.
  2. 每个神经元都对局部进行感知,然后更高层对局部信息增和起来得到全局信息.

卷积操作

  1. 卷积计算就是利用卷积核对相邻的像素点进行加权求和的过程.然后用relu函数进行激活操作.
  2. 权值相同即权值共享,以及多卷积核.

pooling池化层

池化:对不同位置的特征进行聚合统计称为池化.目的就是减少特征,降低了信息输出的维度.

  1. 子采样有两种方式,一种是均值采样(mean-pooling)一种是最大值子采样(max-pooling)
    1. 均值子采样的卷积核中每个权重都是0.25,卷积核在原图inputX上的滑动的步长为2。均值子采样的效果相当于把原图模糊缩减至原来的1/4。
    2. 最大值子采样的卷积核中各权重值中只有一个为1,其余均为0,卷积核中为1的位置对应inputX被卷积核覆盖部分值最大的位置。卷积核在原图inputX上的滑动步长为2。最大值子采样的效果是把原图缩减至原来的1/4,并保留每个2*2区域的最强输入。实现了非线性映射
  2. 多卷积的目的:单卷积学习到的往往是局部的,层数越高,学到的特征就月全局化.

全连接层与分类层

  • 卷积relu+pooling+卷积relu+几层全连接+ 分类

numpycnn实现

代码语言:javascript
复制
import skimage.data
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import numpycnn

# 读取图像
img = skimage.data.chelsea()
# 转成灰度图像
img = skimage.color.rgb2gray(img)

# 初始化卷积核
l1_filter = np.zeros((2, 3, 3))
# 检测垂直边缘
l1_filter[0, :, :] = np.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])
# 检测水平边缘
l1_filter[1, :, :] = np.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]])

"""
第一个卷积层
"""
# 卷积操作
l1_feature_map = numpycnn.conv(img, l1_filter)
# ReLU
l1_feature_map_relu = numpycnn.relu(l1_feature_map)
# Pooling
l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2)

"""
第二个卷积层
"""
# 初始化卷积核
l2_filter = np.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
# 卷积操作
l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)
# ReLU
l2_feature_map_relu = numpycnn.relu(l2_feature_map)
# Pooling
l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2)

"""
第三个卷积层
"""
# 初始化卷积核
l3_filter = np.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
# 卷积操作
l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)
# ReLU
l3_feature_map_relu = numpycnn.relu(l3_feature_map)
# Pooling
l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2)

"""
结果可视化
"""
fig0, ax0 = plt.subplots(nrows=1, ncols=1)
ax0.imshow(img).set_cmap("gray")
ax0.set_title("Input Image")
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
plt.show()
plt.savefig("in_img1.png", bbox_inches="tight")
plt.close(fig0)

# 第一层
fig1, ax1 = plt.subplots(nrows=3, ncols=2)
ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
ax1[0, 0].get_xaxis().set_ticks([])
ax1[0, 0].get_yaxis().set_ticks([])
ax1[0, 0].set_title("L1-Map1")

ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
ax1[0, 1].get_xaxis().set_ticks([])
ax1[0, 1].get_yaxis().set_ticks([])
ax1[0, 1].set_title("L1-Map2")

ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")
ax1[1, 0].get_xaxis().set_ticks([])
ax1[1, 0].get_yaxis().set_ticks([])
ax1[1, 0].set_title("L1-Map1ReLU")

ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")
ax1[1, 1].get_xaxis().set_ticks([])
ax1[1, 1].get_yaxis().set_ticks([])
ax1[1, 1].set_title("L1-Map2ReLU")

ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 0].set_title("L1-Map1ReLUPool")

ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 1].set_title("L1-Map2ReLUPool")
plt.show()
plt.savefig("L1.png", bbox_inches="tight")
plt.close(fig1)

# 第二层
fig2, ax2 = plt.subplots(nrows=3, ncols=3)
ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")
ax2[0, 0].get_xaxis().set_ticks([])
ax2[0, 0].get_yaxis().set_ticks([])
ax2[0, 0].set_title("L2-Map1")

ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")
ax2[0, 1].get_xaxis().set_ticks([])
ax2[0, 1].get_yaxis().set_ticks([])
ax2[0, 1].set_title("L2-Map2")

ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")
ax2[0, 2].get_xaxis().set_ticks([])
ax2[0, 2].get_yaxis().set_ticks([])
ax2[0, 2].set_title("L2-Map3")

ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")
ax2[1, 0].get_xaxis().set_ticks([])
ax2[1, 0].get_yaxis().set_ticks([])
ax2[1, 0].set_title("L2-Map1ReLU")

ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")
ax2[1, 1].get_xaxis().set_ticks([])
ax2[1, 1].get_yaxis().set_ticks([])
ax2[1, 1].set_title("L2-Map2ReLU")

ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")
ax2[1, 2].get_xaxis().set_ticks([])
ax2[1, 2].get_yaxis().set_ticks([])
ax2[1, 2].set_title("L2-Map3ReLU")

ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax2[2, 0].get_xaxis().set_ticks([])
ax2[2, 0].get_yaxis().set_ticks([])
ax2[2, 0].set_title("L2-Map1ReLUPool")

ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax2[2, 1].get_xaxis().set_ticks([])
ax2[2, 1].get_yaxis().set_ticks([])
ax2[2, 1].set_title("L2-Map2ReLUPool")

ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")
ax2[2, 2].get_xaxis().set_ticks([])
ax2[2, 2].get_yaxis().set_ticks([])
ax2[2, 2].set_title("L2-Map3ReLUPool")
plt.show()
plt.savefig("L2.png", bbox_inches="tight")
plt.close(fig2)

# 第三层
fig3, ax3 = plt.subplots(nrows=1, ncols=3)
ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")
ax3[0].get_xaxis().set_ticks([])
ax3[0].get_yaxis().set_ticks([])
ax3[0].set_title("L3-Map1")

ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")
ax3[1].get_xaxis().set_ticks([])
ax3[1].get_yaxis().set_ticks([])
ax3[1].set_title("L3-Map1ReLU")

ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax3[2].get_xaxis().set_ticks([])
ax3[2].get_yaxis().set_ticks([])
ax3[2].set_title("L3-Map1ReLUPool")

plt.show()
plt.savefig("L3.png", bbox_inches="tight")
plt.close(fig3)
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2021-12-28 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 文章目录
  • 引子
  • CNN基础
    • 局部感知野
      • 卷积操作
        • pooling池化层
          • 全连接层与分类层
            • numpycnn实现
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档