前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >康奈尔Nature论文:一种使用反向传播训练的深度物理神经网络

康奈尔Nature论文:一种使用反向传播训练的深度物理神经网络

作者头像
数据派THU
发布2022-03-04 10:16:13
3320
发布2022-03-04 10:16:13
举报
文章被收录于专栏:数据派THU
代码语言:javascript
复制
来源:专知本文约1000字,建议阅读5分钟康奈尔大学的研究人员介绍了一种混合原位-计算机算法。

深度学习加速器旨在高效地执行深度学习,通常针对推理阶段,并且通常通过利用传统电子设备之外的物理基板。迄今为止的方法一直无法应用反向传播算法来原位训练非常规的新型硬件。反向传播的优势使其成为事实上的大规模神经网络训练方法,因此这一缺陷构成了主要障碍。康奈尔大学的研究人员介绍了一种混合原位-计算机算法,称为物理感知训练,它应用反向传播来训练可控的物理系统。该研究以「Deep physical neural networks trained with backpropagation」为题,于 2022 年 1 月 26 日发布在《Nature》。

深度学习模型已成为科学和工程领域的普遍工具。然而,它们的能源需求现在越来越限制它们的可扩展性。深度学习加速器旨在高效地执行深度学习,通常针对推理阶段,并且通常通过利用传统电子设备之外的物理基板。迄今为止的方法一直无法应用反向传播算法来原位训练非常规的新型硬件。反向传播的优势使其成为事实上的大规模神经网络训练方法,因此这一缺陷构成了主要障碍。

在这里,康奈尔大学的研究人员介绍了一种混合原位-计算机算法,称为物理感知训练,它应用反向传播来训练可控的物理系统。

正如深度学习通过由数学函数层构成的深度神经网络,来实现计算那样,该方法允许研究人员训练由可控物理系统层构成的深度物理神经网络,即使物理层与传统人工神经网络层缺乏任何数学同构。

为了证明该方法的普遍性,研究人员训练了基于光学、力学和电子学的各种物理神经网络,以实验性地执行音频和图像分类任务。物理感知训练将反向传播的可扩展性与原位算法可实现的缺陷和噪声的自动缓解相结合。

物理神经网络具有比传统电子处理器更快、更节能地执行机器学习的潜力,更广泛地说,可以赋予物理系统自动设计的物理功能,例如机器人材料和智能传感器。

该研究以「Deep physical neural networks trained with backpropagation」为题,于 2022 年 1 月 26 日发布在《Nature》。

https://www.nature.com/articles/s41586-021-04223-6

图示:PNN 简介。(来源:论文)

参考链接:https://mp.weixin.qq.com/s/3rMozAdOVMpGq7Qi_6mJ8A

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-03-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档