前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >手把手教你使用CNN进行交通标志识别(已开源)

手把手教你使用CNN进行交通标志识别(已开源)

作者头像
小白学视觉
发布2022-12-28 17:22:24
2K0
发布2022-12-28 17:22:24
举报

在本文中,使用Python编程语言和库Keras和OpenCV建立CNN模型,成功地对交通标志分类器进行分类,准确率达96%。开发了一款交通标志识别应用程序,该应用程序具有图片识别和网络摄像头实时识别两种工作方式。

本文的GitHub:https://github.com/Daulettulegenov/TSR_CNN

提供一个开源的交通标志的数据集,希望能够帮助到各位小伙伴:http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html

近年来,计算机视觉是现代技术发展的一个方向。这个方向的主要任务是对照片或摄像机中的物体进行分类。在通常的问题中,使用基于案例的机器学习方法来解决。本文介绍了利用机器学习算法进行计算机视觉在交通标志识别中的应用。路标是一种外形固定的扁平人造物体。道路标志识别算法应用于两个实际问题。第一个任务是控制自动驾驶汽车。无人驾驶车辆控制系统的一个关键组成部分是物体识别。识别的对象主要是行人、其他车辆、交通灯和路标。第二个使用交通标志识别的任务是基于安装在汽车上的DVRs的数据自动绘制地图。接下来将详细介绍如果搭建能够识别交通标志的CNN网络。

导入必要的库

代码语言:javascript
复制
# data analysis and wrangling
import numpy as np
import pandas as pd
import os
import random

# visualization
import matplotlib.pyplot as plt
from PIL import Image
# machine learning
from keras.models import Sequential
from keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from keras.utils.np_utils import to_categorical
from keras.layers import Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
import cv2
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator

加载数据

Python Pandas包帮助我们处理数据集。我们首先将训练和测试数据集获取到Pandas DataFrames中。我们还将这些数据集组合起来,在两个数据集上一起运行某些操作。

代码语言:javascript
复制
# Importing of the Images
count = 0
images = []
classNo = []
myList = os.listdir(path)
print("Total Classes Detected:",len(myList))
noOfClasses=len(myList)
print("Importing Classes.....")
for x in range (0,len(myList)):
    myPicList = os.listdir(path+"/"+str(count))
    for y in myPicList:
        curImg = cv2.imread(path+"/"+str(count)+"/"+y)
        curImg = cv2.resize(curImg, (30, 30))
        images.append(curImg)
        classNo.append(count)
    print(count, end =" ")
    count +=1
print(" ")
images = np.array(images)
classNo = np.array(classNo)

为了对已实现的系统进行适当的训练和评估,我们将数据集分为3组。数据集分割:20%测试集,20%验证数据集,剩余的数据用作训练数据集。

代码语言:javascript
复制
# Split Data
X_train, X_test, y_train, y_test = train_test_split(images, classNo, test_size=testRatio)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validationRatio)

该数据集包含34799张图像,由43种类型的路标组成。这些包括基本的道路标志,如限速、停车标志、让路、优先道路、“禁止进入”、“行人”等。

代码语言:javascript
复制
# DISPLAY SOME SAMPLES IMAGES OF ALL THE CLASSES
num_of_samples = []
cols = 5
num_classes = noOfClasses
fig, axs = plt.subplots(nrows=num_classes, ncols=cols, figsize=(5, 300))
fig.tight_layout()
for i in range(cols):
    for j,row in data.iterrows():
        x_selected = X_train[y_train == j]
        axs[j][i].imshow(x_selected[random.randint(0, len(x_selected)- 1), :, :], cmap=plt.get_cmap("gray"))
        axs[j][i].axis("off")
        if i == 2:
            axs[j][i].set_title(str(j)+ "-"+row["Name"])
            num_of_samples.append(len(x_selected))
代码语言:javascript
复制
# DISPLAY A BAR CHART SHOWING NO OF SAMPLES FOR EACH CATEGORY
print(num_of_samples)
plt.figure(figsize=(12, 4))
plt.bar(range(0, num_classes), num_of_samples)
plt.title("Distribution of the training dataset")
plt.xlabel("Class number")
plt.ylabel("Number of images")
plt.show()

数据集中的类之间存在显著的不平衡。有些类的图像少于200张,而其他类的图像超过1000张。这意味着我们的模型可能偏向于过度代表的类别,特别是当它对自己的预测不自信时。为了解决这个问题,我们使用了现有的图像转换技术。

为了更好的分类,数据集中的所有图像都被转换为灰度图像

代码语言:javascript
复制
# PREPROCESSING THE IMAGES
def grayscale(img):
    img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    return img

def equalize(img):
    img =cv2.equalizeHist(img)
    return img

def preprocessing(img):
    img = grayscale(img)     # CONVERT TO GRAYSCALE
    img = equalize(img)      # STANDARDIZE THE LIGHTING IN AN IMAGE
    img = img/255            # TO NORMALIZE VALUES BETWEEN 0 AND 1 INSTEAD OF 0 TO 255
    return img

X_train=np.array(list(map(preprocessing,X_train)))  # TO IRETATE AND PREPROCESS ALL IMAGES
X_validation=np.array(list(map(preprocessing,X_validation)))
X_test=np.array(list(map(preprocessing,X_test)))

数据增强是对原始数据集进行增强的一种方法。数据越多,结果越高,这是机器学习的基本规律。

代码语言:javascript
复制
#AUGMENTATAION OF IMAGES: TO MAKEIT MORE GENERIC
dataGen= ImageDataGenerator(width_shift_range=0.1,   # 0.1 = 10%     IF MORE THAN 1 E.G 10 THEN IT REFFERS TO NO. OF  PIXELS EG 10 PIXELS
                            height_shift_range=0.1,
                            zoom_range=0.2,  # 0.2 MEANS CAN GO FROM 0.8 TO 1.2
                            shear_range=0.1,  # MAGNITUDE OF SHEAR ANGLE
                            rotation_range=10)  # DEGREES
dataGen.fit(X_train)
batches= dataGen.flow(X_train,y_train,batch_size=20)  # REQUESTING DATA GENRATOR TO GENERATE IMAGES  BATCH SIZE = NO. OF IMAGES CREAED EACH TIME ITS CALLED
X_batch,y_batch = next(batches)

热编码用于我们的分类值y_train、y_test、y_validation。

代码语言:javascript
复制
y_train = to_categorical(y_train,noOfClasses)
y_validation = to_categorical(y_validation,noOfClasses)
y_test = to_categorical(y_test,noOfClasses)

使用Keras库创建一个神经网络。下面是创建模型结构的代码:

代码语言:javascript
复制
def myModel():
    model = Sequential()
    model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu', input_shape=X_train.shape[1:]))
    model.add(Conv2D(filters=32, kernel_size=(5,5), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(rate=0.25))
    model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
    model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(rate=0.25))
    model.add(Flatten())
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(rate=0.5))
    model.add(Dense(43, activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
代码语言:javascript
复制
# TRAIN
model = myModel()
print(model.summary())
history = model.fit(X_train, y_train, batch_size=batch_size_val, epochs=epochs_val, validation_data=(X_validation,y_validation))

上面的代码使用了6个卷积层和1个全连接层。首先,在模型中添加带有32个滤波器的卷积层。接下来,我们添加一个带有64个过滤器的卷积层。在每一层的后面,增加一个窗口大小为2 × 2的最大拉层。还添加了系数为0.25和0.5的Dropout层,以便网络不会再训练。在最后几行中,我们添加了一个稠密的稠密层,该层使用softmax激活函数在43个类中执行分类。

在最后一个epoch结束时,我们得到以下值:loss = 0.0523;准确度= 0.9832;Val_loss = 0.0200;Val_accuracy = 0.9943,这个结果看起来非常好。之后绘制我们的训练过程

代码语言:javascript
复制
#PLOT
plt.figure(1)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])
plt.title('loss')
plt.xlabel('epoch')
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])
plt.title('Acurracy')
plt.xlabel('epoch')
plt.show()
score =model.evaluate(X_test,y_test,verbose=0)
print('Test Score:',score[0])
print('Test Accuracy:',score[1])
代码语言:javascript
复制
#testing accuracy on test dataset
from sklearn.metrics import accuracy_score

y_test = pd.read_csv('Test.csv')
labels = y_test["ClassId"].values
imgs = y_test["Path"].values
data=[]
for img in imgs:
    image = Image.open(img)
    image = image.resize((30,30))
    data.append(np.array(image))
X_test=np.array(data)
X_test=np.array(list(map(preprocessing,X_test)))
predict_x=model.predict(X_test) 
pred=np.argmax(predict_x,axis=1)
print(accuracy_score(labels, pred))

我们在测试数据集中测试了构建的模型,得到了96%的准确性。

使用内置函数model_name.save(),我们可以保存一个模型以供以后使用。该功能将模型保存在本地的.p文件中,这样我们就不必一遍又一遍地重新训练模型而浪费大量的时间。

代码语言:javascript
复制
model.save("CNN_model_3.h5")

接下来给大家看一些识别的结果

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2022-12-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档