🤵♂️ 个人主页: @AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱🏍 🙋♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)
该文章收录专栏 [✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]
跳跃连接指的是将输入数据直接添加到网络某一层输出之上。这种设计使得信息可以更自由地流动,并且保留了原始输入数据中的细节和语义信息。 使信息更容易传播到后面的层次,避免了信息丢失。跳跃连接通常会通过求和操作或拼接操作来实现。
以图像分类任务为例,假设我们使用卷积神经网络进行特征提取,在每个卷积层后面都加入一个池化层来减小特征图尺寸。然而,池化操作可能导致信息损失。通过添加一个跳跃连接,将原始输入直接与最后一个池化层输出相加或拼接起来,可以保留原始图像中更多的细节和语义信息。
如果感兴趣了解更多,建议越多文章:
非常经典的文章《All You Need to Know About Skip Connections》: https://www.analyticsvidhya.com/blog/2021/08/all-you-need-to-know-about-skip-connections/
残差网络(Residual Network),也被称为ResNet
,是一种深度神经网络架构,旨在解决梯度消失和训练困难的问题。它的核心思想是通过引入残差块(residual blocks)来构建网络,并通过跳跃连接将输入直接添加到层输出上。
它的核心思想是通过引入残差块(residual blocks)来构建网络,并通过跳跃连接将输入直接添加到层输出上。(残差块就是包含了跳跃连接的block,扑捉偏差(残差)
)。具体而言,在每个块或子模块内部,输入被加到该块/子模块计算后得到的输出上,并且这两者尺寸必须相同。然后再将此结果送入下一个块/子模块进行处理。
下面是详细解释残差网络的步骤:
总结起来,残差网络通过引入捷径连接和利用残差学习机制来改善深层神经网络中的梯度消失、信息流动等问题。这些方法使得网络能够更轻松地训练,并且在图像分类、目标检测和语义分割等计算机视觉任务中取得了显著成果。
写到这,我突然想到那这种反向传播又如何训练呢? 其实ResNet的反向传播和训练过程与其他神经网络相似,只是引入了残差连接~~(多计算了一步~~,具体步骤还是如下