前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Sparse稀疏检索介绍与实践

Sparse稀疏检索介绍与实践

作者头像
JadePeng
发布2024-04-16 08:21:19
1720
发布2024-04-16 08:21:19
举报

Sparse稀疏检索介绍

在处理大规模文本数据时,我们经常会遇到一些挑战,比如如何有效地表示和检索文档,当前主要有两个主要方法,传统的文本BM25检索,以及将文档映射到向量空间的向量检索。

BM25效果是有上限的,但是文本检索在一些场景仍具备较好的鲁棒性和可解释性,因此不可或缺,那么在NN模型一统天下的今天,是否能用NN模型来增强文本检索呢,答案是有的,也就是我们今天要说的sparse 稀疏检索。

传统的BM25文本检索其实就是典型的sparse稀疏检索,在BM25检索算法中,向量维度为整个词表,但是其中大部分为0,只有出现的关键词或子词(tokens)有值,其余的值都设为零。这种表示方法不仅节省了存储空间,而且提高了检索效率。

向量的形式, 大概类似:

代码语言:javascript
复制
{
   '19828': 0.2085,
   '3508': 0.2374,
   '7919': 0.2544,
   '43': 0.0897,
   '6': 0.0967,
   '79299': 0.3079
}

key是term的编号,value是NN模型计算出来的权重。

稀疏向量与传统方法的比较

当前流行的sparse检索,大概是通过transformer模型,为doc中的term计算weight,这样与传统的BM25等基于频率的方法相比,sparse向量可以利用神经网络的力量,提高了检索的准确性和效率。BM25虽然能够计算文档的相关性,但它无法理解词语的含义或上下文的重要性。而稀疏向量则能够通过神经网络捕捉到这些细微的差别。

稀疏向量的优势

  1. 计算效率:稀疏向量在处理包含零元素的操作时,通常比密集向量更高效。
  2. 信息密度:稀疏向量专注于关键特征,而不是捕捉所有细微的关系,这使得它们在文本搜索等应用中更为高效。
  3. 领域适应性:稀疏向量在处理专业术语或罕见关键词时表现出色,例如在医疗领域,许多专业术语不会出现在通用词汇表中,稀疏向量能够更好地捕捉这些术语的细微差别

稀疏向量举例

SPLADE 是一款开源的transformer模型,提供sparse向量生成,下面是效果对比,可以看到sparse介于BM25和dense之间,比BM25效果好。

Model

MRR@10 (MS MARCO Dev)

Type

BM25

0.184

Sparse

TCT-ColBERT

0.359

Dense

doc2query-T5 link

0.277

Sparse

SPLADE

0.322

Sparse

SPLADE-max

0.340

Sparse

SPLADE-doc

0.322

Sparse

DistilSPLADE-max

0.368

Sparse

Sparse稀疏检索实践

模型介绍

国内的开源模型中,BAAI的BGE-M3提供sparse向量向量生成能力,我们用这个来进行实践。

BGE是通过RetroMAE的预训练方式训练的类似bert的预训练模型。

常规的Bert预训练采用了将输入文本随机Mask再输出完整文本这种自监督式的任务,RetroMAE采用一种巧妙的方式提高了Embedding的表征能力,具体操作是:将低掩码率的的文本A输入到Encoder种得到Embedding向量,将该Embedding向量与高掩码率的文本A输入到浅层的Decoder向量中,输出完整文本。这种预训练方式迫使Encoder生成强大的Embedding向量,在表征模型中提升效果显著。

向量生成

  • 先安装 !pip install -U FlagEmbedding
  • 然后引入模型
代码语言:javascript
复制
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True)

编写一个函数用于计算embedding:

代码语言:javascript
复制
def embed_with_progress(model, docs, batch_size):
    batch_count = int(len(docs) / batch_size) + 1
    print("start embedding docs", batch_count)
    query_embeddings = []
    for i in tqdm(range(batch_count), desc="Embedding...", unit="batch"):
        start = i * batch_size
        end = min(len(docs), (i + 1) * batch_size)
        if end <= start:
            break
        output = model.encode(docs[start:end], return_dense=False, return_sparse=True, return_colbert_vecs=False)
        query_embeddings.extend(output['lexical_weights'])

    return query_embeddings

然后分别计算query和doc的:

代码语言:javascript
复制
query_embeddings = embed_with_progress(model, test_sets.queries, batch_size)
doc_embeddings = embed_with_progress(model, test_sets.docs, batch_size)

然后是计算query和doc的分数,model.compute_lexical_matching_score(交集的权重相乘,然后累加),注意下面的代码是query和每个doc都计算了,计算量会比较大,在工程实践中需要用类似向量索引的方案(当前qdrant、milvus等都提供sparse检索支持)

代码语言:javascript
复制
# 检索topk
recall_results = []
import numpy as np
for i in tqdm(range(len(test_sets.query_ids)), desc="recall...", unit="query"):
    query_embeding = query_embeddings[i]
    query_id = test_sets.query_ids[i]
    if query_id not in test_sets.relevant_docs:
        continue
    socres = [model.compute_lexical_matching_score(query_embeding, doc_embedding) for doc_embedding in doc_embeddings]
    topk_doc_ids = [test_sets.doc_ids[i] for i in np.argsort(socres)[-20:][::-1]]
    recall_results.append(json.dumps({"query": test_sets.queries[i], "topk_doc_ids": topk_doc_ids, "marked_doc_ids": list(test_sets.relevant_docs[query_id].keys())}))

# recall_results 写入到文件

with open("recall_results.txt", "w", encoding="utf-8") as f:
    f.write("\n".join(recall_results))

最后,基于测试集,我们可以计算召回率:

代码语言:javascript
复制
import json

# 读取 JSON line 文件
topk_doc_ids_list = []
marked_doc_ids_list = []

with open("recall_results.txt", "r") as file:
    for line in file:
        data = json.loads(line)
        topk_doc_ids_list.append(data["topk_doc_ids"])
        marked_doc_ids_list.append(data["marked_doc_ids"])


# 计算 recall@k
def recall_at_k(k):
    recalls = []
    for topk_doc_ids, marked_doc_ids in zip(topk_doc_ids_list, marked_doc_ids_list):
        # 提取前 k 个召回结果
        topk = set(topk_doc_ids[:k])
        # 计算交集
        intersection = topk.intersection(set(marked_doc_ids))
        # 计算 recall
        recall = len(intersection) / min(len(marked_doc_ids), k)
        recalls.append(recall)
    # 计算平均 recall
    average_recall = sum(recalls) / len(recalls)
    return average_recall

# 计算 recall@5, 10, 20
recall_at_5 = recall_at_k(5)
recall_at_10 = recall_at_k(10)
recall_at_20 = recall_at_k(20)

print("Recall@5:", recall_at_5)
print("Recall@10:", recall_at_10)
print("Recall@20:", recall_at_20)

在测试集中,测试结果:

代码语言:javascript
复制
Recall@5: 0.7350086355785777 
Recall@10: 0.8035261945883735 
Recall@20: 0.8926130345462158

在这个测试集上,比BM25测试出来的结果要更好,但是仅凭这个尚不能否定BM25,需要综合看各自的覆盖度,综合考虑成本与效果。

参考

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2024-04-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Sparse稀疏检索介绍
    • 稀疏向量与传统方法的比较
      • 稀疏向量的优势
        • 稀疏向量举例
        • Sparse稀疏检索实践
          • 模型介绍
            • 向量生成
            • 参考
            相关产品与服务
            腾讯云服务器利旧
            云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档