前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Pytorch-自动微分模块

Pytorch-自动微分模块

作者头像
@小森
发布2024-04-20 09:02:31
790
发布2024-04-20 09:02:31
举报
文章被收录于专栏:xiaosenxiaosen
🥇接下来我们进入到Pytorch的自动微分模块torch.autograd~

自动微分模块是PyTorch中用于实现张量自动求导的模块。PyTorch通过torch.autograd模块提供了自动微分的功能,这对于深度学习和优化问题至关重要,因为它可以自动计算梯度,无需手动编写求导代码。torch.autograd模块的一些关键组成部分:

  1. 函数的反向传播torch.autograd.function 包含了一系列用于定义自定义操作的函数,这些操作可以在反向传播时自动计算梯度。
  2. 计算图的反向传播torch.autograd.functional 提供了一种构建计算图并自动进行反向传播的方式,这类似于其他框架中的符号式自动微分。
  3. 数值梯度检查torch.autograd.gradcheck 用于检查数值梯度与自动微分得到的梯度是否一致,这是确保正确性的一个有用工具。
  4. 错误检测模式torch.autograd.anomaly_mode 在自动求导时检测错误产生路径,有助于调试。
  5. 梯度模式设置torch.autograd.grad_mode 允许用户设置是否需要梯度,例如在模型评估时通常不需要计算梯度。
  6. 求导方法:PyTorch提供backward()torch.autograd.grad()两种求梯度的方法。backward()会将梯度填充到叶子节点的.grad字段,而torch.autograd.grad()直接返回梯度结果。
  7. requires_grad属性:在创建张量时,可以通过设置requires_grad=True来指定该张量是否需要进行梯度计算。这样在执行操作时,PyTorch会自动跟踪这些张量的计算过程,以便后续进行梯度计算。

梯度基本计算

代码语言:javascript
复制
def func1():
    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    f = x ** 2 +10
    # 自动微分求导
    f.backward()   # 反向求导
    # backward 函数计算的梯度值会存储在张量的 grad 变量中
    print(x.grad)
def func2():
    x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)
    # 变量经过中间计算
    f1 = x ** 2 + 10
    
    # f2 = f1.mean()  # 平均损失,相当于每个值/4
    f2 = f1.sum()  # 求和损失,相当于每个值*1
    f2.backward()
    print(x.grad)
def func3():
    x1 = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    x2 = torch.tensor(20, requires_grad=True, dtype=torch.float64)
    y = x1 ** 2 + x2 ** 2 + x1 * x2
    y = y.sum()
    y.backward()
    print(x1.grad, x2.grad)

def func4():
    x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)
    x2 = torch.tensor([30, 40], requires_grad=True, dtype=torch.float64)

    y = x1 ** 2 + x2 ** 2 + x1 * x2
    y = y.sum()
    y.backward()
    print(x1.grad,x2.grad)

func1func2,它们分别处理标量张量和向量张量的梯度计算。

  • func1中,首先创建了一个标量张量x,并设置requires_grad=True以启用自动微分。然后计算f = x ** 2 + 10,接着使用f.backward()进行反向求导。最后,通过打印x.grad输出梯度值。
  • func2中,首先创建了一个向量张量x,并设置requires_grad=True以启用自动微分。然后计算f1 = x ** 2 + 10,接着使用f1.sum()对向量张量进行求和操作,得到一个标量张量f2。最后,使用f2.backward()进行反向求导。
  • func3func4分别求多个标量和向量的情况,与上面相似。

控制梯度计算

我们可以通过一些方法使 requires_grad=True 的张量在某些时候计算时不进行梯度计算。 

  1. 第一种方式是使用torch.no_grad()上下文管理器,在这个上下文中进行的所有操作都不会计算梯度。
  2. 第二种方式是通过装饰器@torch.no_grad()来装饰一个函数,使得这个函数中的所有操作都不会计算梯度。
  3. 第三种方式是通过torch.set_grad_enabled(False)来全局关闭梯度计算功能,之后的所有操作都不会计算梯度,直到下一次再次调用此方法torch.set_grad_enabled(True)开启梯度计算功能。
代码语言:javascript
复制
x = torch.tensor(10, requires_grad=True, dtype=torch.float64)
print(x.requires_grad)

# 第一种方式: 对代码进行装饰
with torch.no_grad():
    y = x ** 2
print(y.requires_grad)

# 第二种方式: 对函数进行装饰
@torch.no_grad()
def my_func(x):
    return x ** 2
print(my_func(x).requires_grad)


# 第三种方式
torch.set_grad_enabled(False)
y = x ** 2
print(y.requires_grad)

默认张量的 grad 属性会累计历史梯度值,如果需要重复计算每次的梯度,就需要手动清除。

代码语言:javascript
复制
x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)

for _ in range(3):

    f1 = x ** 2 + 20
    f2 = f1.mean()

    if x.grad is not None:
        x.grad.data.zero_()   # 本身来改动

    f2.backward()
    print(x.grad)

x.grad不是x,因为x是一个tensor张量,而x.grad是x的梯度。在PyTorch中,张量的梯度是通过自动求导机制计算得到的,而不是直接等于张量本身。

梯度下降优化最优解

代码语言:javascript
复制
x = torch.tensor(10, requires_grad=True, dtype=torch.float64)

for _ in range(5000):

     
    f = x ** 2

    # 梯度清零
    if x.grad is not None:
        x.grad.data.zero_()

    # 反向传播计算梯度
    f.backward()

    # 更新参数
    x.data = x.data - 0.001 * x.grad

    print('%.10f' % x.data)

更新参数相当于通过学习率对当前数值进行迭代。 f.backward()是PyTorch中自动梯度计算的函数,用于计算张量`f`关于其所有可学习参数的梯度。在这个例子中,`f`是一个标量张量,它只有一个可学习参数`x`。当调用f.backward()`时,PyTorch会自动计算`f`关于`x`的梯度,并将结果存储在`x.grad`中。这样,我们就可以使用这个梯度来更新`x`的值,以便最小化损失函数`f`。

梯度计算注意

当对设置 requires_grad=True 的张量使用 numpy 函数进行转换时, 会出现如下报错:

Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

此时, 需要先使用 detach 函数将张量进行分离, 再使用 numpy 函数。detach 之后会产生一个新的张量, 新的张量作为叶子结点,并且该张量和原来的张量共享数据, 但是分离后的张量不需要计算梯度。

代码语言:javascript
复制
import torch

def func1():

    x = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)

    # Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
    # print(x.numpy())  # 错
    print(x.detach().numpy())  


def func2():

    x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)

    # x2 作为叶子结点
    x2 = x1.detach()

    # 两个张量的值一样: 140421811165776 140421811165776
    print(id(x1.data), id(x2.data))
    x2.data = torch.tensor([100, 200])
    print(x1)
    print(x2)

    # x2 不会自动计算梯度: False
    print(x2.requires_grad)
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2024-04-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 梯度基本计算
  • 控制梯度计算
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档