首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

云端数据仓库推荐

根据您的需求,以下是几款市场上表现优秀的云端数据仓库推荐:

云端数据仓库推荐

  • AWS Redshift:适合需要高性能和与AWS生态系统深度集成的用户。
  • Google BigQuery:以其卓越的性能和易用性著称,适合需要快速分析大数据的用户。
  • Snowflake:特别适合处理大规模数据分析任务,支持跨云部署和数据共享。
  • Microsoft Azure Synapse Analytics:集成了企业数据仓库和大数据分析,适合需要实时分析的用户。
  • 腾讯云TDSQL:提供高可靠性、高可用性、强一致性和易扩展性,适合金融、电信、互联网等行业。

云端数据仓库的优势

  • 灵活性:根据实际需求方便地扩展或者缩小存储容量。
  • 安全性:采用严谨的安全措施以保障用户数据安全性。
  • 成本效益:降低数据存储和管理的成本,按需付费。
  • 可扩展性:面对数据量激增,空间日益捉襟见肘的困境,云端存储以其几乎无限的存储空间可因应用需求动态扩展。

云端数据仓库的主要类型及应用场景

  • 公有云数据仓库:适用于需要快速扩展存储资源和数据分析能力的企业。
  • 私有云数据仓库:适用于对数据安全和隐私有较高要求的企业。
  • 混合云数据仓库:结合了公有云和私有云的特点,灵活选择存储和管理方式。
  • 应用案例:包括用户行为分析、用户画像构建、用户经营决策分析等,广泛应用于零售、金融、医疗等行业。

希望这些信息能帮助您做出更合适的选择。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

云端数据仓库的模式选型与建设

作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色,构建并正确配置好数据仓库,对于数据分析工作至关重要。...一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则可能使企业陷入无休止的问题之中,并在未来的企业竞争中处于劣势。 随着越来越多的基础设施往云端迁移,数据仓库是否也需要上云?...一、数据仓库建设 数据仓库(DW)的建设方式有很多种,企业可以根据自身需求进行选择。下图简单罗列了主要的DW建设方案并做出扩展对比。...二、云端数据仓库 2.1 云方案优势 基于上面的说明,采用数据仓库的云服务,具有较多优势,包括: 更好的性价比(无论是前期购买、还是后期运营) 更快的交付速度(最快在分钟级) 更优的弹性能力(扩展或压缩...支持从Google云端加载或直接访问,也可以导入数据流。其没有索引,除了数据管理外,几乎不需要维护。 作者:韩锋 首发于作者个人公号《韩锋频道》。 来源:宜信技术学院

2.3K20

Snowflake,价值120亿美元的云端数据仓库公司

根据最近的信息,著名的创业公司,云端数据仓库提供者Snowflake经过最近一轮的融资,其市值已经达到120亿了。这是一个很多创业公司上市之后都很难达到的高度。...简单来说,Snowflake作为一个在不同的云上都能跑起来的,企业级数据仓库,在成本和安全性上都有其优势。...既可以避免企业lock-in到一个特定的数据仓库里(比如Redshift或者BigQuery),又提供了云端的数据仓库解决方案。...目前为止,成功的云端数据仓库基本上都是c++写的。c++对于一个快速的查询引擎的实现有天然的优势。Hadoop生态圈不一定做不出这样一个系统,但是对其中很多组件的增加和改造的必然是大量大量的工作。...而Snowflake已经形成了一定的竞争力,各大云厂商在数据仓库的投入也异常巨大。短期内会不会出现一个Hadoop生态圈的产品,出现以后能不能成功,都是值得再观望的问题。

4K20
  • 技术资源推荐(数据仓库篇)

    0x00 前言 前段时间有不少朋友让推荐一些数据仓库的书出来,本着“如果重复三次回答同一个问题,就应该写一篇博客”的原则,在这里梳理一下数据仓库相关的资源给大家。...0x01 书籍推荐 一、数据仓库工具箱(第3版):维度建模权威指南 英文名:《The DataWarehouse Toolkit-The Complete Guide to Dimensona Modeling...所以强烈推荐看了这本书,至少是前5五章。...推荐这本书的原因就在于现在大部分互联网公司的数据仓库都是基于这一套大数据框架来的,更准确的来讲,大家其实都是先工程,后理论,因此这本书可以作为对大数据生态的一览。...有一本小书推荐给大家:《数据仓库实践》,地址:http://www.mdjs.info/2018/01/01/data-warehouse/data-warehouse-in-action/。

    3.9K31

    推荐数据仓库的必读书

    0x00 前言 数仓的必读书,其实已经推荐过好几次了,但是最近依旧有很多朋友在群里问数据仓库入门看什么书,索性接着视频号的讲稿,给大家再分享一次。 很多读者私信问居士,学习数据仓库该看什么书!...今天,居士就给大家分享居士认为必读的三本: 0x01 推荐 前两本书,一本是《数据仓库工具箱:维度建模权威指南》,一本是《数据仓库》。 两本分别代表了数据仓库建模中的两大流派:维度建模和范式建模。...因此,就要推荐第三本书,也是居士逢人必推的一本:《大数据之路:阿里巴巴大数据实践》。...该书可作为整个数据体系建设的参考书,从数据平台到数据仓库到数据应用,都有比较不错的讲解。...0xFF 总结 如果上面三本书觉得不够,也可以看一下居士写的关于数据仓库的文章,其中有一篇维度建模的文章在Google搜索里面也排到第一了。 当然,如果你有推荐的书,也可以留言出来~

    1.1K21

    【推荐】在R中无缝集成Github云端代码托管

    建立完项目后,接下来的任务就是要把我们的R代码上传到云端了!首先,我们需要commit我们对当前项目的修改。...其实,Github除了云端代码托管,最大的魅力在于继承了Git版本控制系统。Git是一剂后悔药,可以让你回到过去代码编写的任何阶段。...有时我们需要比较两个版本的代码,例如本地版本与云端版本,使用VS的compare功能可以自动高亮出所有修改,让所有变动一目了然。下图就是一个大猫实际编程中遇到的例子。...左边是云端版本,右边是本地已经修改但是还没上传云端更新的版本。可以看到VS用绿色标记出了新增加的行,用红色标记出了删除的行,用斜线标记出了空白部分。是不是非常酷炫? ?

    2.1K40

    数据仓库①:数据仓库概述

    ~这就是关于数据仓库最贴切的定义了。事实上数据仓库不应让传统关系数据库来实现,因为关系数据库最少也要求满足第1范式,而数据仓库里的关系表可以不满足第1范式。...有了这些数据快照以后,用户便可将其汇总,生成各历史阶段的数据分析报告; 数据仓库组件 数据仓库的核心组件有四个:各源数据库,ETL,数据仓库,前端应用。如下图所示: ? 1....数据仓库开发流程 在数据库系列的第五篇 中,曾详细分析了数据库系统的开发流程。数据仓库的开发流程和数据库的比较相似,因此本文仅就其中区别进行分析。 下图为数据仓库的开发流程: ?...在国内最优秀的互联网公司里(如阿里、腾讯),很多数据引擎是架构在数据仓库之上的(如数据分析引擎、数据挖掘引擎、推荐引擎、可视化引擎等等)。...不少员工认为,开发成本应更多集中在数据仓库层,不断加大数据建设的投入。因为一旦规范、标准、高性能的数据仓库建立好了,在之上进行数据分析、数据挖掘、跑推荐算法等都是轻松惬意的事情。

    2.9K72

    推荐收藏:跨云数据仓库(data warehouse)环境搭建,这货特别干!

    方案 业务服务在腾讯云,在腾讯云机器上部署数据收集服务并将获取的业务数据打包上传至 sftp 供阿里云上的数据仓库服务经过 ETL 过程存储至 hive 库。...: l-test.beta4.dt.cn4 与现有的 beta 环境数据仓库机器使用同一套 hadoop 集群资源,hdfs 存储路径新增 /user/test/hive/warehouse_uat 隔离环境数据...服务正常运行 canal.deploy/adapter服务机器:l-test2.beta.plat.tp2,已存在且canal.deploy和canal.adapter服务正常运行 2.发布代码工程 数据仓库机器...开通业务服务机器:l-test.beta4.ep.tx1 与 sftp 机器之间的通信(关闭防火墙限制) 开通数据仓库机器:l-test.beta4.dt.cn4 与 sftp 机器之间的通信(关闭防火墙限制...sync 为通过监听 binlog 消息通过代码方式实现的个性化的同步逻辑,也是本次数据仓库搭建主要使用的数据同步方式。

    1.1K20

    数据仓库实验一:数据仓库建立实验

    查看、编辑数据仓库的基本模型(即事实表与维度表之间的关系)。针对某一系统需求,从无到有设计一 个数据仓库基本架构,要求能够按不同维度进行多维数据查询分析。...六、实验总结体会   数据仓库的设计过程需要充分理解业务需求和数据特点,结合具体业务场景进行建模。...在本实验中,针对电商销售情况分析的需求,采用了星型模型来设计数据仓库的维度表和事实表,这样的设计能够简洁清晰地反映业务事件的关联关系。   在数据仓库的设计中,维度表的设计尤为重要。...通过定义数据源、数据源视图、维表、多维数据集等,完成了数据仓库的搭建和多维分析项目的部署。   ...总的来说,本次实验使我深入了解了数据仓库的建立方法和多维分析的基本过程,对于应用 SQL Server 进行数据仓库建模和多维分析项目开发有了更深入的理解和实践经验。

    5300

    【数据仓库】现代数据仓库坏了吗?

    数据仓库是现代数据堆栈的基础,所以当我们看到 Convoy 数据负责人 Chad Sanderson 在 LinkedIn 上宣称“数据仓库坏了”时,它引起了我们的注意。...我会让您自己决定“不可变数据仓库”(或主动与被动 ETL)是否适合您的数据团队。...不可变数据仓库如何结合规模和可用性 乍得桑德森的观点 现代数据堆栈有许多排列,但数据仓库是一个基础组件。...另一种方法:引入不可变数据仓库 不可变数据仓库概念(也称为活动 ETL)认为,仓库应该是通过数据来表示现实世界,而不是乱七八糟的随机查询、损坏的管道和重复信息。...不可变数据仓库也面临挑战。以下是一些可能的解决方案。 我并不认为不可变数据仓库是灵丹妙药。与任何方法一样,它也有其优点和缺点,而且肯定不是每个组织都适用。

    1.7K20

    数据仓库

    *了解数据仓库相关技术 *了解数据仓库设计过程建造,运行及维护 *了解OLAP及多维数据模型 决策支持系统及其演化 一般将数据分为:分析型数据与操作型数据 操作型数据:由企业的基本业务系统产生的数据...数据仓库的特性:面向主题性,集成性,不可更新和时间性。 集成:数据仓库最重要的特性,分为数据抽取转换,清理(过滤)和装载 不可更新:数据仓库中的数据以批量方式处理,不进行一般主义上的数据更新。...数据仓库的体系结构与环境 从数据层次角度的体系结构来看,典型的数据仓库的数据体系结构包括:操作型数据、操作型 数据存储、数据仓库、数据集市和个体层数据 从功能结构看,可分为数据处理、数据管理和数据应用三个层次...数据仓库的数据组织 数据仓库的数据单位中保存数据的细化程度或综合程度的级别。...细化程度越高,粒度越小 粒度影响到数据仓库的数据量及系统能回答的查询的类型 进行数据仓库的数据组织时,应根据当前应用的需求进行多粒度级设计。满足多角度,多层次数据查询要求。

    1.8K40

    【数据仓库与联机分析处理】数据仓库

    一、数据仓库的概念 目前很难给数据仓库(Data Warehouse)一个严格的定义,不准确地说,数据仓库也是一种数据库,它与操作性数据库进行分开维护。...1、面向主题是指数据仓库会围绕一些主题来组织和构建,如顾客、供应商、产品等,数据仓库关注决策者的数据建模与分析,而不是企业的日常操作和事务处理,因此,数据仓库排除对决策支持过程无用的数据,提供面向特定主题的视图...3、相对稳定是指数据仓库大多会分开存放数据,数据仓库不需要进行事务处理、数据恢复和并发控制等机制,通常数据仓库只需要两种数据访问操作:数据的初始化装入和数据的访问。...4、反映历史变化是指数据仓库是从历史的角度提供信息,换句话说,数据仓库中的关键结构都会显式或者隐式地包含时间元素。...二、数据仓库与操作性数据库的区别 为了进一步加深对数据仓库概念的理解,我们把数据库系统和数据仓库进行对比。为了区分,这里把数据库系统称为操作性数据库。

    6300

    数据仓库②-数据仓库与数据集市建模

    前言 数据仓库建模包含了几种数据建模技术,除了之前在数据库系列中介绍过的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。...本文将详细介绍数据仓库维度建模技术,并重点讨论三种基于ER建模/关系建模/维度建模的数据仓库总体建模体系:规范化数据仓库,维度建模数据仓库,以及独立数据集市。...数据仓库建模体系之规范化数据仓库 所谓"数据仓库建模体系",指的是数据仓库从无到有的一整套建模方法。最常见的三种数据仓库建模体系分别为:规范化数据仓库,维度建模数据仓库,独立数据集市。...很多书将它们称为"数据仓库建模方法",但笔者认为数据仓库建模体系更能准确表达意思,请允许我自作主张一次吧:)。下面首先来介绍规范化数据仓库。...数据仓库建模体系之维度建模数据仓库 非维度建模数据仓库(dimensionally modeled data warehouse)是一种使用交错维度进行建模的数据仓库,其总体架构如下图所示: ?

    5.3K72

    数据仓库入门

    什么是数据仓库(Data Warehouse,DW)?...1991 年,数据仓库之父 Bill Inmon 在《Building the Data Warehouse》一书中,给出的定义: “数据仓库一个面向主题的、集成的、稳定的、随时间变化的数据的集合,以用于支持管理决策过程...建立数据仓库的目的是帮助企业高层系统地组织、理解和使用数据,以便进行战略决策。 数据仓库系统的体系结构 源数据层 源数据是数据仓库系统的基础,是整个系统的数据源泉。...数据存储与管理层 元数据 元数据是关于数据的数据,位于数据仓库的上层,用以描述数据仓库内数据的结构、位置和 建立方法。通过元数据进行数据仓库的管理和使用。...数据仓库 数据仓库中存放了企业的整体信息,而数据集市只存放了某个主题需要的的信息,其目的是 减少数据处理量。

    1.9K20
    领券