RStudio发布新接口,在R语言中使用TensorFlow

AiTechYun

编辑:yuxiangyu

R语言是一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘、机器学习等。今日RStudio发布博文称,已为TensorFlow创建了R接口,使R用户能方便的使用TensorFlow。

在过去的一年中,我们一直在努力为Google的开源机器学习框架TensorFlow创建R接口。我们之所以如此关注它,最重要的是TensorFlow为深度学习应用提供了最先进的基础设施。

在谷歌开源后的这两年里,TensorFlow迅速成为机器学习从业者和研究人员的首选框架。周六,我们的JJ Allaire在rstudio :: conf的主题演讲中正式宣布了我们关于TensorFlow的工作:

视频链接:http://imgcdn.atyun.com/2018/02/Machine-Learning-with-R-and-TensorFlow.mp4?_=1

在主题演讲中,JJ不仅描述了我们在TensorFlow上所做的工作,而且还深入地讨论了深度学习(深度学习是什么,它是如何工作的,以及它在未来几年可能与R的用户相关的地方,视频搬运自youtube)。

新的包和工具

TensorFlow的R接口由一套R包组成,它们为TensorFlow提供了各种接口,用于不同的任务和抽象层次,包括:

keras– 神经网络的高级接口,主要用于快速实验。

tfestimators– 通用模型类型的实现,如回归器和分类器。

tensorflow– 向TensorFlow计算图的底层接口。

tfdatasets– TensorFlow模型的可扩展输入管道。

除了TensorFlow的各种R接口之外,还有一些工具有助于训练的工作流程,包括在RStudio IDE中对训练指标的实时反馈:

tfruns包提供了跟踪和管理TensorFlow训练时的运行和实验的工具:

访问GPU

训练CNN或RNN可能非常耗费算力,而能够使用高端的英伟达GPU可以缩短训练时间。但是,大多数用户在本地没有这种硬件。为了解决这个问题,我们提供了多种在云中使用GPU的方法,包括:

cloudml包,一个接到谷歌的托管机器学习引擎的R接口。

带有Tensorflow-GPU的RStudio服务器(一个Amazon EC2映像,配置了NVIDIA CUDA驱动程序、TensorFlow、R接口的TensorFlow以及RStudio服务器)。

使用Paperspace服务设置Ubuntu 16.04云桌面和GPU的详细说明。

如果你已经拥有所需的英伟达GPU硬件,还可以在本地工作站上设置 GPU。

设置说明:https://tensorflow.rstudio.com/tools/local_gpu.html

学习资源

TensorFlow for R:https://tensorflow.rstudio.com/

Deep Learning with R:https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/161729554X

Deep Learning with Keras Cheatsheet:https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

Gallery:https://tensorflow.rstudio.com/gallery/

Examples:https://tensorflow.rstudio.com/learn/examples.html

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180220B082JF00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码关注腾讯云开发者

领取腾讯云代金券