神经成像数据通常包括多种模态,如结构或功能磁共振成像、扩散张量成像和正电子发射断层扫描等,它们为观察和分析大脑提供了多种视角。为了充分利用不同模态的互补表征,我们需要进行多模态融合,以挖掘模态间和模态内的信息。这些丰富的信息,使得结合多种模态数据来探索健康和疾病状态下大脑的结构和功能特征变得越来越流行。欧洲科学院外籍院士蒋田仔团队首先回顾了融合多模态脑成像数据的各种先进机器学习方法,大致分为无监督学习策略和有监督学习策略。随后讨论了一些具有代表性的应用范式,包括如何帮助理解大脑结构、如何提高认知、行为和脑衰老的预测,以及如何加速大脑疾病的生物标记探索。最后讨论了一些令人兴奋的新兴趋势和重要的未来方向。文章全面概述多模态脑成像融合方法及成功的应用范式,以及多尺度和大数据带来的挑战,这引发了开发新模型和平台的迫切需求。文章已发表于《机器智能研究(英文)》2024年第1期中。
全文导读
欧洲科学院院士蒋田仔团队 | 脑成像数据的多模态融合: 方法与应用
全文下载:
Multimodal Fusion of Brain Imaging Data: Methods and applications
Na Luo, Weiyang Shi, Zhengyi Yang, Ming Song & Tianzi Jiang
https://link.springer.com/article/10.1007/s11633-023-1442-8
https://www.mi-research.net/en/article/doi/10.1007/s11633-023-1442-8
领取专属 10元无门槛券
私享最新 技术干货