首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

不止是“变价”那么简单!Fe基催化剂如何通过电子结构与价态协同,“高能”驱动水裂解?

欢迎点赞转发,然后回复 A510, 得到word全文

Fe基催化剂在电解水反应中的优异催化性能与其价态密切相关,具体体现在氢气生成反应(HER)和氧气生成反应(OER)的催化活性上。这些关系可以从以下几个方面进行详细阐述:

1. **Fe的电子结构与催化活性**

Fe基催化剂的催化性能与其电子结构密切相关。例如,在NiFe双金属催化剂中,Ni与Fe的协同作用显著提升了OER和HER的活性。Ni能够增强Fe-O键的强度,促进高氧化态FeOOH相的形成,从而提高OER活性[[2]]。此外,Fe位点的电子丰富性有助于氢吸附/解离,而电子贫乏的位点则有利于氧吸附/解离,这种电子结构调控是实现高效双功能催化剂的关键[[20]]。

2. **Fe的价态与催化活性的关系**

Fe的不同价态在HER和OER中扮演了不同的角色。例如,Fe(II)在HER中表现出较高的活性,因为其电子较丰富,能够促进氢吸附;而在OER中,高氧化态的Fe(如Fe(III)或Fe(IV))则更有利于氧吸附和解离[[29]]。研究表明,通过调控Fe的价态分布,可以优化催化剂的电子结构,从而提升其催化性能。例如,FeOOH相的形成被认为是OER活性的关键因素之一[[1]]。

3. **Fe基催化剂的重构与稳定性**

Fe基催化剂在电解过程中会发生表面重构,这种重构对催化活性有重要影响。例如,FeS2@FeOOH核壳结构催化剂在OER中表现出优异的活性,这归因于其重构后的结构能够提供更多的活性位点[[21]]。同样,在NiFe双金属催化剂中,Fe的流失和沉积过程也会影响其催化性能[[22]]。

4. **界面工程与协同效应**

通过界面工程调控Fe基催化剂的性能是另一种提升催化活性的方法。例如,Ni2P/FeP异质结构通过增强Fe-O键强度,促进了高氧化态FeOOH相的形成,从而显著提高了OER性能[[2]]。此外,Ru-O3Se4单原子催化剂通过电子转移实现了Ni和Fe之间的协同作用,优化了反应中间体的吸附能,从而显著提升了HER和OER的活性[[7]][[9]]。

5. **电荷转移与能垒降低**

Fe基催化剂的催化性能还与其电荷转移能力密切相关。例如,Ru-O3Se4单原子催化剂通过电子从Ni转移到Fe,降低了反应步骤的能量壁垒,从而显著提升了HER和OER的活性[[7]][[9]]。类似地,Fe掺杂的Co9S8异质结通过电子转移优化了H和O的吸附能级,从而提高了HER和OER的效率[[13]][[27]]。

6. **实际应用中的挑战与解决方案**

尽管Fe基催化剂在电解水反应中表现出优异的性能,但其稳定性仍面临挑战。例如,Fe基催化剂在长时间运行过程中可能会发生溶解或失活[[19]][[25]]。为解决这一问题,研究者通过引入其他金属(如Ni、Mo)或调整催化剂结构(如形成核壳结构)来提高其稳定性和耐久性[[4]][[21]]。

Fe基催化剂在电解水反应中的优异性能与其价态密切相关。通过调控Fe的电子结构、价态分布以及界面工程等手段,可以显著提升其在HER和OER中的催化活性。这些研究为设计高效、稳定的双功能电解水催化剂提供了重要的理论依据和实践指导。

引用内容:

[[1]] Continuous tuning of Fe-O covalency via bioengineering for facilitating overall water splitting

[[2]] Unraveling the Synergistic Mechanism of Bi-functional Nickel-iron Phosphides Catalysts for Overall Water Splitting

[[3]] Turning the surface electronic effect over core-shell CoS2―Fe x Co 1-x S2 nanooctahedra toward electrochemical water splitting in the alkaline medium

[[4]] Multiphase Fe-doped Ni3S2/MoOx Electrocatlyst Prepared by Facile One-Step Hydrothermal for Full-Cell Water Splitting

[[5]] Strategic synthesis of heptacoordinated FeIII bifunctional complexes for efficient water electrolysis

[[6]] Fe2O3_P-doped CoMoO4电催化剂在碱性介质中实现高效的水分解

[[7]] Novel ru-O3Se4 single atoms regulate the charge redistribution at Ni3Se2_FeSe2 interface for improved overall water splitting in alkaline media

[[8]] Tuning the activity of cobalt 2-hydroxyphosphonoacetates-derived electrocatalysts for water splitting and oxygen reduction

[[9]] Novel Ru-O3Se4 single atoms regulate the charge redistribution at Ni3Se2_FeSe2 interface for improved overall water splitting in alkaline media

[[10]] Neighboring V atom as a catalytic switch

[[11]] Highly efficient and durable water electrolysis via ligand modulated interfacial assembly

[[12]] High-valent metal site incorporated heterointerface catalysts for high-performance anion-exchange membrane water electrolysers

[[13]] Fe cluster modified Co9S8 heterojunction: Highly efficient photoelectrocatalyst for

[[14]] High-current density alkaline water/seawater splitting by Mo and Fe co-doped Ni3S2

[[15]] 钴基电催化剂的电子结构调控及其电催化性能的研究

[[16]] Dual role of Fe boost lattice oxygen oxidation of Mo-based materials from kinetics and thermodynamics

[[17]] Combined exsolution and electrodeposition strategy for enhancing electrocatalytic activity of Ti-based perovskite oxides in oxygen and hydrogen evolution reactions

[[18]] Low-temperature plasma-assisted synthesis of iron and nitrogen co-doped CoFeP-N nanowires for high-efficiency electrocatalytic water splitting

[[19]] Rational Design of a Stable Fe-rich Ni-Fe Layered Double Hydroxide for the Industrially Relevant Dynamic Operation of Alkaline Water Electrolyzers

[[20]] Iron-doped ruthenium with a good interfacial environment achieving superior hydrogen evolution activity under alkaline conditions

[[21]] Highly efficient FeS2@FeOOH core-shell water oxidation electrocatalyst formed by surface reconstruction of FeS2 microspheres supported on Ni foam

[[22]] Stainless steel activation for efficient alkaline oxygen evolution in advanced electrolyzers

[[23]] Ultrafast room-temperature synthesis of large-scale, low-cost, and highly active ni-fe based electrodes toward industrialized seawater oxidation

[[24]] 钴基电催化剂的电子结构调控及其电催化性能的研究

[[25]] High-Performance Alkaline Seawater Electrolysis with Anomalous Chloride Promoted Oxygen Evolution Reaction

[[26]] Dynamics of Fe Adsorption and Desorption from CoOxHy during Oxygen Evolution Reaction Electrocatality

[[27]] Hexagonal Co9S8: Experimental and mechanistic study of enhanced electrocatalytic hydrogen evolution of a new crystallographic phase

[[28]] Fe dimers incorporated within ni(OH)2 nanosheets to enable rapid oxygen radical coupling and exceptional durability in oxygen evolution

[[29]] Atomic manipulation to create high-valent Fe4+ for efficient and ultrastable oxygen evolution at industrial-level current density

[[30]] Co1-xFe_xO_y 氧化物纳米催化剂

[[31]] Regulating local atomic environment of Fe3 O4 to promote anion exchange membrane based alkaline seawater electrolysis

[[32]] 钴基电催化剂的电子结构调控及其电催化性能的研究

##

##Fe²⁺与Fe³⁺在HER和OER中的吸附能差异如何影响氢/氧中间体(H*,OOH*)的吸附-脱附动力学?

--

## Question 1

Fe²⁺与Fe³⁺在氢气发生反应(HER)和氧气进化反应(OER)中的吸附能差异对氢/氧中间体(H*,OOH*)的吸附-脱附动力学具有显著影响。这种影响主要体现在吸附能的变化如何调节中间体的覆盖度、反应速率以及整体催化性能。

1. **吸附能差异对中间体吸附的影响**

Fe²⁺和Fe³⁺的电子结构不同,导致它们对中间体的吸附能力存在显著差异。例如,低自旋Fe³⁺(t²g⁴)因其较大的d轨道分裂能,能够更有效地降低O*中间体的吸附强度,从而改变反应的速率决定步骤。具体而言,低自旋Fe³⁺通过减少O*到OOH*的转化,降低了反应的能量障碍,使得OER反应速率显著提升[[1]]。相比之下,高自旋Fe³⁺则倾向于增强对O*的吸附,这可能导致反应速率降低[[1]]。

2. **吸附能差异对HER的影响**

在HER中,Fe²⁺通常表现出更强的吸附能力,这与其较低的氧化态和较大的电子密度有关。这种特性使得Fe²⁺更容易吸附H*中间体,从而加速HER反应。例如,Fe-O键的形成和优化能够显著降低H*的吸附能,从而提高HER活性[[6]][[13]]。此外,Fe²⁺的高吸附能力还能够通过促进Volmer和Heyrovsky步骤来降低反应能垒,从而加速HER反应[[13]]。

3. **吸附-脱附动力学的协同效应**

吸附能的变化不仅影响中间体的吸附强度,还会影响其脱附动力学。例如,在OER中,表面吸附的Fe物种在电解质中的溶解和再沉积过程会显著影响OER活性。研究表明,表面吸附的Fe物种在搅拌条件下能够加速脱附,并且这种脱附过程可以通过重新沉积来恢复催化活性[[4]][[11]]。这种动态平衡进一步优化了中间体的覆盖度和反应速率。

4. **电子结构调控的作用**

通过调控Fe²⁺和Fe³⁺的比例以及其电子结构,可以进一步优化中间体的吸附-脱附动力学。例如,通过引入缺陷或异质结构,可以调节金属位点的电子密度,从而优化中间体的吸附能。这种策略在NiFe-LDH等材料中得到了验证,其中低自旋Fe³⁺通过引入缺陷实现了对O*中间体吸附强度的优化[[1]]。类似地,在Fe-Co(OH)₂/Fe₂O₃异质结构中,通过结合吸附演化机制(AEM)和晶格氧机制(LOM),可以协同优化中间体的吸附和脱附动力学[[8]][[12]]。

5. **实验与理论验证**

多项实验和理论研究均表明,Fe²⁺和Fe³⁺的吸附能差异对中间体的吸附-脱附动力学具有决定性作用。例如,NiFe催化剂中Fe³⁺的引入显著提高了OER活性,而Fe²⁺则通过增强H*的吸附能力来提升HER活性[[2]][[6]][[13]]。此外,密度泛函理论(DFT)计算也揭示了不同价态金属对中间体吸附能的影响机制[[6]]。

Fe²⁺与Fe³⁺在HER和OER中的吸附能差异通过调节中间体(H*,OOH*)的吸附-脱附动力学,显著影响了催化反应的速率和效率。这种差异不仅体现在吸附强度上,还通过电子结构调控和动态平衡机制进一步优化了催化性能。未来的研究可以通过进一步探索金属离子比例、电子结构调控以及界面工程等策略,来实现更高效的电催化水分解系统。

引用内容:

[[1]] Low-spin Fe³⁺ evoked by multiple defects with optimal intermediate adsorption attaining unparalleled performance in water oxidation

[[2]] Fe-doped ni-based catalysts surpass ir-baselines for oxygen evolution due to optimal charge-transfer characteristics

[[3]] The role of Cu3+ in the oxygen evolution activity of copper oxides

[[4]] Dynamics of Fe Adsorption and Desorption from CoOxHy during Oxygen Evolution Reaction Electrocatality

[[5]] 2D Ferromagnetic M3GeTe2 (M = Ni_Fe) for Boosting Intermediates Adsorption toward Faster Water Oxidation

[[6]] Steering intermediates coverage of W-doped Fe3N for efficient kinetic promotion in water splitting by lattice and electronic configuration engineering

[[7]] Heterostructure-derived heterovalent Fe(OH)2/Fe pair sites: Tuning adsorption of intermediates and enhancing utilization of atomic H for efficient nitrate reduction to ammonia

[[8]] Coupling adsorbed evolution and lattice oxygen mechanism in fe-co(OH)2_Fe2O3 heterostructure for enhanced electrochemical water oxidation

[[9]] Fe-S 双调制吸附物演化和晶格氧兼容机制用于水氧化

[[10]] Continuous tuning of Fe-O covalency via bioengineering for facilitating overall water splitting

[[11]] Dynamics of Fe Adsorption and Desorption from CoOxHy during Oxygen Evolution Reaction Electrocatalysis

[[12]] Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Fe-Co(OH)2_Fe2O3 Heterostructure for Enhanced Electrochemical Water Oxidation

[[13]] High-density atomic level defect engineering of 2D fe-based metal-organic frameworks boosts oxygen and hydrogen evolution reactions

[[14]] Dense heterogeneous interfaces boost the electrocatalytic oxygen evolution reaction

[[15]] Mediation of oxidation and spin states of fe/P-CoO2 core-shell structures catalysts for oxygen evolution reaction

[[16]] Constructing built-in electric field to accelerate the asymmetric local charge distribution for efficient alkaline overall water_seawater splitting

[[17]] A high-entropy atomic environment converts inactive to active sites for electrocatalysis

[[18]] Codecoration of phosphate and iron for improving oxygen evolution reaction of layered ni(OH)2_NiOOH

##

##双金属协同体系(如NiFe-LDH)中Fe的价态分布如何通过金属间电荷转移调控d带中心位置?

--

## Question 2

在双金属协同体系(如NiFe-LDH)中,Fe的价态分布可以通过金属间电荷转移调控其d带中心位置,从而优化催化性能。这一过程涉及多种机制和策略,具体如下:

1. **电荷转移与d带中心调控**

在NiFe-LDH中,通过引入缺陷或掺杂可以调控Fe的d带中心。例如,研究表明,通过在NiFe-LDH中引入硼酸盐修饰,可以有效调节Ni的d带中心,使其更接近费米能级,从而提高电子传输效率和催化活性[[5]][[24]]。此外,通过掺杂过渡金属原子(如Mn、Fe),可以进一步调整d带中心,优化吸附能并加速反应速率[[9]]。

2. **氧空位与高价态Fe的形成**

氧空位的存在是调控Fe价态分布的重要手段。氧空位会促进Ni到Fe的电子转移,从而提高Fe的氧化态,增强催化活性。例如,在NiFe-LDH中,氧空位的引入能够促进高价态Ni/Fe氧化物的形成,这些氧化物作为活性位点,显著提高了OER(析氧反应)的性能[[4]][[8]][[16]]。

3. **异质结构与界面电荷转移**

通过构建异质结构(如p-n异质结),可以在界面处实现显著的电荷转移。例如,将Co3O4纳米立方体与NiFe-LDH结合,可以在界面处引发电子从Ni转移到Co,从而将惰性的Ni2+氧化为更活跃的Ni3+,显著提升OER性能[[21]][[22]]。

4. **配体效应与强配位作用**

强配位作用可以通过配体(如TPP或TCPP)稳定Fe的高价态,并通过电荷重分布优化d带中心。例如,研究表明,TPP配体能够通过强配位作用稳定NiFe-LDH中的Fe3+价态,并通过电荷重分布优化d带中心,从而提高催化稳定性[[1]][[9]]。

5. **缺陷工程与多缺陷协同作用**

通过引入多种缺陷(如氧空位、阳离子空位等),可以进一步调控Fe的价态分布和d带中心。例如,在NiFe-LDH中引入双阳离子缺陷(如Co和Mo),可以促进金属位点的氧化过渡,形成具有最优氧中间体结合能的活性位点[[26]]。

6. **理论计算与密度泛函理论(DFT)分析**

DFT计算表明,通过调控d带中心可以显著优化催化性能。例如,通过调整Ni和Fe的比例,可以实现d带中心的精确调控,从而优化OER过程中决定速率的步骤[[3]][[17]]。

7. **动态氧空位再生机制**

在NiFe-LDH中,通过构建氧泵(如Ni4Mo合金)来动态再生氧空位,可以进一步提升催化稳定性。这种机制不仅优化了电子结构,还增强了催化过程中的耐久性[[25]]。

NiFe-LDH中Fe的价态分布和d带中心可以通过多种方式调控,包括氧空位的引入、异质结构的构建、强配位作用以及缺陷工程等。这些策略共同作用,优化了催化性能并提高了反应效率。这种调控机制为设计高效双金属协同催化剂提供了重要的理论和实践依据。

引用内容:

[[1]] Coordination stabilization of fe by porphyrin-intercalated NiFe-LDH under industrial-level alkaline conditions for long-term electrocatalytic water oxidation

[[2]] Non-Interacting Ni and Fe Dual-Atom Pair Sites in N-Doped Carbon Catalysts for Efficient Concentrating Solar-Driven Photothermal CO2 Reduction

[[3]] Regulating electronic structure of bimetallic NiFe-THQ conductive metal-organic frameworks to boost catalytic activity for oxygen evolution reaction

[[4]] Negative-valent platinum stabilized by pt―ni electron bridges on oxygen-deficient NiFe-LDH for enhanced electrocatalytic hydrogen evolution

[[5]] Regulating the band structure of ni active sites in few-layered nife-LDH by in situ adsorbed borate for ampere-level oxygen evolution

[[6]] Regulating the Spin Polarization of NiFe Layered Double Hydroxide for the Enhanced Oxygen Evolution Reaction

[[7]] Ferredoxin-Inspired Design of S-Synergized Fe-Fe Dual-Metal Center Catalysts for Enhanced Electrocatalytic Oxygen Reduction Reaction

[[8]] Directed electron transport induced surface reconstruction of 2D NiFe-LDH_stanene heterojunction catalysts for efficient oxygen evolution

[[9]] Realizing the Tailored Catalytic Performances on Atomic Pt-Promoted Transition Metal Moieties Implan

[[10]] Atomic modulation of single dispersed ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting

[[11]] Breaking trade-off between catalytic activity and carbon deposit by tailoring d-band center of NiFe alloy for dry reforming of carbonate

[[12]] Local Single Co Sites at the Second Shell of Fe-N4 Active Sites to Boost Oxygen Reduction Reaction

[[13]] Dynamic molybdate oxyanion boosts self-optimization and self-healing on the NiMoFe heterostructure

[[14]] Constructing Ru-O-TM Bridge in NiFe-LDH Enables High Current Hydrazine-Assisted H2 Production

[[15]] Atomic modulation of single dispersed ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting

[[16]] Low-spin Fe³⁺ evoked by multiple defects with optimal intermediate adsorption attaining unparalleled performance in water oxidation

[[17]] Electronic communication between single atomic nickel and iron-nitrogen species promote the bifunctional oxygen evolution and reduction for efficient rechargeable zinc-air battery

[[18]] Synergistically modulating d__i_-band centers of bimetallic elements for activating cobalt atoms and promoting water dissociation toward accelerating alkaline hydrogen evolution

[[19]] Built-in electric field in freestanding hydroxide_sulfide heterostructures for industrially relevant oxygen evolution

[[20]] Modulating interfacial electronic coupling of copper-mediated NiFe layered double hydroxide nanoprisms via structural engineering for efficient OER

[[21]] Activation of hidden catalytic sites in 2D basal plane via p–n heterojunction interface engineering toward efficient oxygen evolution reaction

[[22]] Activation of hidden catalytic sites in 2D basal plane via p-n heterojunction interface engineering toward efficient oxygen evolution reaction

[[23]] D-band center modulation of metallic co-incorporated Co7Fe3 alloy heterostructure for regulating polysulfides in highly efficient lithium-sulfur batteries

[[24]] Regulating the band structure of ni active sites in few-layered nife-LDH by in situ adsorbed borate for ampere-level oxygen evolution

[[25]] Engineering lattice oxygen regeneration of NiFe layered double hydroxide enhances oxygen evolution catalysis durability

[[26]] Operando reconstruction toward dual-cation-defects co-containing NiFe oxyhydroxide for ultralow energy consumption industrial water splitting electrolyzer

[[27]] Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal-Based (oxy)Hydroxide

[[28]] Ce-doping rather than CeO2 modification and their synergistic effect

[[29]] Rational design of a stable fe-rich ni-fe layered double hydroxide for the industrially relevant dynamic operation of alkaline water electrolyzers

[[30]] Modulating the d-band center enables ultrafine Pt3 Fe alloy nanoparticles for pH-universal hydrogen evolution reaction

##

##电化学原位氧化过程中Fe³⁺/Fe⁴⁺动态演变对OER四电子转移路径(吸附体机制)的促进作用机制是什么?

--

## Question 3

在电化学原位氧化过程中,Fe³⁺/Fe⁴⁺动态演变对OER(氧气析出反应)四电子转移路径(吸附体机制)的促进作用机制主要体现在以下几个方面:

1. **高氧化态铁的形成与吸附体机制的协同作用**

在碱性介质中,通过引入Mo原子并拉伸Fe-O键,可以诱导形成高氧化态的Fe⁴⁺。这种高氧化态的铁不仅增强了催化剂的氧化能力,还促进了高效稳定的吸附体演化机制(AEM)。具体而言,Fe⁴⁺的引入能够显著提高催化剂的活性位点数量和稳定性,从而优化OER的动力学过程[[1]][[2]]。

2. **自旋态调控与吸附体活性位点的优化**

研究表明,低自旋Fe³⁺(LS)作为OER的高活性位点,可以通过调控自旋态来降低反应能垒。例如,在NiFe-LDH中,通过引入缺陷诱导的配位不饱和位点,可以增强d轨道分裂能量,从而有效降低O*中间体的吸附强度。这种机制使得反应路径从传统的两电子路径转变为更高效的四电子路径[[4]]。

3. **表面吸附铁物种的动态演变**

在电解过程中,表面吸附的铁物种会随着电位的变化而发生动态演变。例如,表面吸附的Fe³⁺在高电位下会被进一步氧化为Fe⁴⁺,从而形成更多的活性位点。这种动态演变不仅提高了催化剂的周转频率(TOF),还增强了其在碱性条件下的稳定性[[3]][[12]]。

4. **晶格氧参与与吸附体机制的协同作用**

晶格氧(LOM)机制与吸附体机制之间存在协同作用。研究表明,通过调控催化剂中的氧缺陷密度,可以同时激活金属位点和晶格氧位点。例如,在NiFe基催化剂中,通过控制氧缺陷浓度,可以优化金属位点和晶格氧位点的协同作用,从而显著提高OER性能[[14]][[15]]。

5. **自旋选择性电子转移与吸附体机制的耦合**

自旋选择性电子转移机制在OER中也起到了重要作用。例如,在Co掺杂的尖晶石结构中,Co与Fe之间的耦合可以形成高效的自旋选择性电子转移通道,从而促进吸附体机制的活性。这种机制通过增强自旋极化电子的转移效率,进一步降低了反应能垒[[26]][[29]]。

6. **催化剂结构与吸附体机制的优化**

催化剂的微观结构对其吸附体机制的促进作用至关重要。例如,在NiFe-LDH中,通过引入特定的缺陷结构,可以实现金属位点和氧空位的协同作用,从而优化吸附体机制的动力学过程。这种结构优化不仅提高了催化剂的活性,还增强了其在工业级电流密度下的稳定性[[8]][[13]]。

Fe³⁺/Fe⁴⁺动态演变通过调控高氧化态铁的形成、自旋态调控、表面吸附铁物种的动态演变、晶格氧参与以及催化剂结构优化等多方面机制,显著促进了OER四电子转移路径(吸附体机制)的活性和稳定性。这些机制共同作用,为设计高效低成本的OER催化剂提供了重要的理论依据和实践指导。

[[表:催化剂类型、电位 (V vs. RHE)、过电位 (mV)、电流密度 (mA cm^-2)、活性位点类型、反应机制]]

引用内容:

[[1]] Atomic manipulation to create high-valent Fe4+ for efficient and ultrastable oxygen evolution at industrial-level current density

[[2]] Atomic manipulation to create high-valent Fe_SUP_4+__SUP_ for efficient and ultrastable oxygen evolution at industrial-level current density

[[3]] Dynamics of Fe Adsorption and Desorption from CoOxHy during Oxygen Evolution Reaction Electrocatalysis

[[4]] Low-spin Fe³⁺ evoked by multiple defects with optimal intermediate adsorption attaining unparalleled performance in water oxidation

[[5]] Fe-S 双调制吸附物演化和晶格氧兼容机制用于水氧化

[[6]] Modulation of the phase transformation of Fe2O3 for enhanced water oxidation under a magnetic field

[[7]] Boosting oxygen evolution reaction activity and durability of FeOOH-MOF composite at industrial-grade current densities by a facile corrosion strategy

[[8]] Unraveling the Mechanism of Self-Repair of NiFe-Based Electrocatalysts by Dynamic Exchange of Iron during the Oxygen Evolution Reaction

[[9]] Electronic communication between single atomic nickel and iron-nitrogen species promote the bifunctional oxygen evolution and reduction for efficient rechargeable zinc-air battery

[[10]] Substantial impact of spin state evolution in OER_ORR catalyzed by fe-N-C

[[11]] The role of Cu3+ in the oxygen evolution activity of copper oxides

[[12]] Cooperative Fe Sites on Transition Metal (oxy)hydroxides Drive High Oxygen Evolution Activity in Base

[[13]] Dual-path Fe migration in the bulk phase reconstructing high quality Ni-O-Fe units for high efficient oxygen evolution reaction

[[14]] Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal-Based (oxy)Hydroxide

[[15]] Fe-S 双调制吸附物演化和晶格氧兼容机制用于水氧化

[[16]] Investigation of Zn-Substituted FeCo2O4 for the Oxygen Evolution Reaction and Reaction Mechanism Monitoring through In Situ Near-Ambient-Pressure X-ray Photoelectron Spectroscopy

[[17]] Activating Fe Activity and Improving Ni Activity via C3N4 Substrate in Alkaline Oxygen Evolution Catalyzed by Ni-Fe Phosphide

[[18]] A hypothesis on the function of high-valent Fe in NiFe (hydr)oxide in the oxygen-evolution reaction

[[19]] High-Performance Alkaline Seawater Electrolysis with Anomalous Chloride Promoted Oxygen Evolution Reaction

[[20]] Minimal doping approach to activate lattice oxygen participation in K2WO4 electrocatalysts for oxygen evolution reaction

[[21]] Stainless steel activation for efficient alkaline oxygen evolution in advanced electrolyzers

[[22]] Improving the oxygen evolution reaction on Fe3O4(001) with single-atom catalysts

[[23]] Enhancing Oxygen Evolution Reaction by Simultaneously Triggering Metal and Lattice Oxygen Redox Pair in Iridium Loading on Ni-Doped Co3O4

[[24]] Elucidating the superwetting FeOOH-modified NiMoO4 electrodes for efficient alkaline oxygen evolution reaction

[[25]] Enhancing Oxygen Evolution Reaction Performance

[[26]] Manipulating Spin Exchange Interactions and Spin-Selected Electron Transfers of 2D Metal Phosphorus Trisulfide Crystals for Efficient Oxygen Evolution Reaction

[[27]] Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway

[[28]] Spin-enhanced O-H cleavage in electrochemical water oxidation

[[29]] Lowering the Coordination of Octahedra in Spinel Oxides by the Robust Fe-N Bonds for Enhancing Oxygen Evolution Reaction

[[30]] Oxygen evolution reaction of amorphous_crystalline composites of NiFe(OH) i /NiFe2O4

##

##异质结构界面(如FeP/Ni₂P)如何通过界面极化效应稳定高活性Fe³⁺物种并抑制过度氧化?

--

## Question 4

异质结构界面(如FeP/Ni₂P)通过界面极化效应稳定高活性Fe³⁺物种并抑制过度氧化的机制可以从多个角度进行分析,结合我搜索到的资料,具体如下:

1. **界面极化效应与电子结构调控**

在异质结构界面中,不同材料之间的电子转移和电荷分布会显著影响界面处的电子状态。例如,Ni2P/FeP异质结通过Ni的引入增强了Fe-O键的强度,并促进了高氧化态FeOOH的形成,从而提高了氧析出反应(OER)的性能[[1]]。这种高氧化态物种的形成与界面极化效应密切相关,因为界面极化能够通过电场作用重新分配电子密度,使高活性物种得以稳定。

2. **高氧化态物种的稳定性**

FeP/Ni₂P异质结构中的高氧化态Fe³⁺物种具有较高的活性,但同时也容易发生过度氧化。为了抑制过度氧化,可以通过界面极化效应来优化电子结构。例如,研究表明,通过构建纳米级异质界面,可以激发合作的几何和电子相互作用,从而稳定高氧化态金属位点[[2]]。此外,Ni2P/FeP异质结中,Ni的存在不仅提升了Fe-O键的强度,还通过界面极化效应降低了过电位,从而减少了过度氧化的可能性[[1]]。

3. **界面极化对反应路径的影响**

界面极化效应还可以通过改变反应路径来抑制过度氧化。例如,在NiFe双金属异质结中,通过界面极化效应将HER活性位点转变为OER活性位点,从而实现了高效的OER性能[[5]]。类似地,在FeP/Ni₂P异质结构中,界面极化可能通过优化电子转移路径,减少中间产物的过度氧化。

4. **协同效应与界面工程**

异质结构界面中的协同效应也是稳定高活性Fe³⁺物种的重要机制。例如,研究表明,通过构建具有高密度界面的异质结构,可以优化电荷分布并降低能量壁垒[[6]]。这种协同效应不仅提高了催化活性,还抑制了过度氧化的发生。

5. **动态稳定性与界面重构**

在实际应用中,界面的动态稳定性对于抑制过度氧化至关重要。例如,通过热退火诱导的界面重构可以增强界面的动态稳定性,从而提高OER性能[[8]]。此外,通过引入特定配体(如醛基THB)动态稳定界面,可以进一步增强高氧化态物种的稳定性[[15]]。

6. **理论计算与实验验证**

密度泛函理论(DFT)计算表明,界面极化效应可以通过优化d带中心来提高活性中心对含氧中间体的吸附能力[[17]]。此外,实验结果也证明了通过界面极化效应可以显著提高OER性能,并抑制过度氧化的发生[[1]][[5]]。

综上,异质结构界面(如FeP/Ni₂P)通过界面极化效应稳定高活性Fe³⁺物种并抑制过度氧化的机制主要包括:优化电子结构、降低能量壁垒、协同效应以及动态稳定性增强。这些机制共同作用,使得异质结构界面在高效电催化反应中表现出卓越的性能。

引用内容:

[[1]] Unraveling the Synergistic Mechanism of Bi-Functional Nickel-Iron Phosphides Catalysts for Overall Water Splitting

[[2]] Evoking Cooperative Geometric and Electronic Interactions at Nanometer Coherent Interfaces toward Enhanced Electrocatalysis

[[3]] Dense heterogeneous interfaces boost the electrocatalytic oxygen evolution reaction

[[4]] High-valent metal site incorporated heterointerface catalysts for high-performance anion-exchange membrane water electrolysers

[[5]] Reversing the interfacial electric field in metal phosphide heterojunction by fe-doping for large-current oxygen evolution reaction

[[6]] Dense crystalline/amorphous phosphides/oxides interfacial sites for enhanced industrial-level large current density seawater oxidation

[[7]] Tailoring nanocrystalline_amorphous interfaces to enhance oxygen evolution reaction performance for FeNi-based alloy fibers

[[8]] Enhancing Interfacial Dynamic Stability Through Accelerated Reconstruction to Inhibit Iron-Loss During Initial Electrochemical Activation

[[9]] Dense heterogeneous interfaces boost the electrocatalytic oxygen evolution reaction

[[10]] Hollow spherical heterostructured FeCo-P catalysts derived from MOF-74 for efficient overall water splitting

[[11]] Activation of hidden catalytic sites in 2D basal plane via p-n heterojunction interface engineering toward efficient oxygen evolution reaction

[[12]] Realizing efficient oxygen evolution at low overpotential via dopant-induced interfacial coupling enhancement effect

[[13]] Triphasic Ni2P-Fe2P-CoP heterostructure interfaces for efficient overall water splitting powered by solar energy

[[14]] Dual-path Fe migration in the bulk phase reconstructing high quality Ni-O-Fe units for high efficient oxygen evolution reaction

[[15]] Stabilizing the Fe Species of Nickel-Iron Double Hydroxide via Chelating Asymmetric Aldehyde-Containing THB Ligand for Long-Lasting Water Oxidation

[[16]] Dynamic restructuring of asymmetric built-in electric field catalysts facilitates the efficient water splitting

[[17]] Defect and interface engineering of hexagonal Fe2O3_ZnCo2O4 n-n heterojunction for efficient oxygen evolution reaction

[[18]] Difunctional Ni2P decorated novel Z-scheme BiVO4/g-C3N4 heterojunction for achieving highly efficient CO2 reduction and tetracycline oxidation

欢迎点赞转发

  • 发表于:
  • 原文链接https://page.om.qq.com/page/O4cIKcJMPXGAh1lEf3rJss_Q0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券