卷积神经网络的前向传播算法详解

这篇干货 我们在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。

CNN结构回顾

CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用Softmax激活函数的输出层。这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构。图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我们上面最后的用Softmax激活函数的输出层。

CNN结构示意图

从上图可以看出,要理顺CNN的前向传播算法,重点是输入层的前向传播,卷积层的前向传播以及池化层的前向传播。而DNN全连接层和用Softmax激活函数的输出层的前向传播算法我们在讲DNN时已经讲到了。

CNN输入层到卷积层的前向传播

输入层的前向传播是CNN前向传播算法的第一步。一般输入层对应的都是卷积层,因此我们标题是输入层前向传播到卷积层。

这里还是以图像识别为例

先考虑最简单的,样本都是二维的黑白图片。这样输入层X就是一个矩阵,矩阵的值等于图片的各个像素位置的值。这时和卷积层相连的卷积核W就也是矩阵。如果样本都是有RGB的彩色图片,这样输入X就是3个矩阵,即分别对应R,G和B的矩阵,或者说是一个张量。这时和卷积层相连的卷积核W就也是张量,对应的最后一维的维度为3.即每个卷积核都是3个子矩阵组成。同样的方法,对于3D的彩色图片之类的样本,我们的输入X可以是4维,5维的张量,那么对应的卷积核W也是个高维的张量。不管维度多高,对于我们的输入,前向传播的过程可以表示为:

其中,上标代表层数,星号代表卷积,而 b 代表我们的偏倚, σ 为激活函数,一般都是ReLU。

和DNN的前向传播比较一下,其实形式非常的像,只是我们这儿是张量的卷积,而不是矩阵的乘法。同时由于W是张量,那么同样的位置,W参数的个数就比DNN多很多了。

为了简化我们的描述,本文后面如果没有特殊说明,我们都默认输入是3维的张量,即用RBG可以表示的彩色图片。

定义的CNN模型参数

1)一般我们的卷积核不止一个,比如有K个,那么我们输入层的输出,或者说第二层卷积层的对应的输入就K个。

2)卷积核中每个子矩阵的的大小,一般都用子矩阵为方阵的卷积核,比如FxF的子矩阵。

3)填充padding(以下简称P),我们卷积的时候,为了可以更好的识别边缘,一般都会在输入矩阵在周围加上若干圈的0再进行卷积,加多少圈则P为多少。

4)步幅stride(以下简称S),即在卷积过程中每次移动的像素距离大小。

CNN隐层到卷积层的前向传播

现在再来看普通隐藏层前向传播到卷积层时的前向传播算法。

假设隐藏层的输出是M个矩阵对应的三维张量,则输出到卷积层的卷积核也是M个子矩阵对应的三维张量。这时表达式和输入层的类似,也是

其中,上标代表层数,星号代表卷积,而b代表我们的偏倚, σ为激活函数,一般是ReLU。也可以写成M个子矩阵子矩阵卷积后对应位置相加的形式,即:

和上面唯一的区别仅仅在于,输入是隐藏层来的,而不是我们输入的原始图片样本形成的矩阵。需要我们定义的CNN模型参数也和上一节一样,这里我们需要定义卷积核的个数K,卷积核子矩阵的维度F,填充大小P以及步幅S。

CNN隐层到池化层的前向传播

池化层的处理逻辑是比较简单的,目的就是对输入的矩阵进行缩小概括。比如输入的若干矩阵是NxN维的,而我们的池化大小是k x k的区域,则输出的矩阵都是N/k × N/k维的。

这里需要需要我们定义的CNN模型参数是:

1)池化区域的大小k

2)池化的标准,一般是MAX或者Average。

CNN隐层到全连接层的前向传播

由于全连接层就是普通的DNN模型结构,因此我们可以直接使用DNN的前向传播算法逻辑,即:

这里的激活函数一般是sigmoid或者tanh。经过了若干全连接层之后,最后的一层为Softmax输出层。此时输出层和普通的全连接层唯一的区别是,激活函数是softmax函数。这里需要定义的CNN模型参数是:

1)全连接层的激活函数

2)全连接层各层神经元的个数

CNN前向传播算法小结

现在总结下CNN的前向传播算法。

算法流程

输入:1个图片样本,CNN模型的层数L和所有隐藏层的类型,对于卷积层,要定义卷积核的大小K,卷积核子矩阵的维度F,填充大小P,步幅S。对于池化层,要定义池化区域大小k和池化标准(MAX或Average),对于全连接层,要定义全连接层的激活函数(输出层除外)和各层的神经元个数。

输出:CNN模型的输出a^L

1)根据输入层的填充大小P,填充原始图片的边缘,得到输入张量a^1。

2)初始化所有隐藏层的参数W,b

3)for l=2 to L−1:

a)如果第l层是卷积层,则输出为

b)如果第l层是池化层,则输出为al=pool(al−1), 这里的pool指按照池化区域大小k和池化标准将输入张量缩小的过程。

c)如果第l层是全连接层,则输出为

4)对于输出层第L层:

以上就是CNN前向传播算法的过程总结。有了CNN前向传播算法的基础,后面再来理解CNN的反向传播算法就简单多了。

参考:

周志华《机器学习》

Neural Networks and Deep Learning by By Michael Nielsen

博客园

http://www.cnblogs.com/pinard/p/6489633.html

李航《统计学习方法》

Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

UFLDL Tutorial

CS231n Convolutional Neural Networks for Visual Recognition, Stanford

本文来自企鹅号 - 天学网人工智能学院媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏张俊红

机器学习优化算法(一)

我们在前面说过机器学习中的损失函数,其实机器学习中的每一个模型都是在求损失函数的最优解,即让损失达到最小值/极小值,求解方式有多种,本篇讲讲其中两个基本的优化方...

903
来自专栏人工智能头条

北大、北理工、旷视联手:用于图像语义分割的金字塔注意力网络

1828
来自专栏深度学习入门与实践

【深度学习系列】用PaddlePaddle和Tensorflow实现GoogLeNet InceptionV2/V3/V4

上一篇文章我们引出了GoogLeNet InceptionV1的网络结构,这篇文章中我们会详细讲到Inception V2/V3/V4的发展历程以及它们的网络结...

19010
来自专栏深度学习计算机视觉

【CVPR 2018】腾讯AI lab提出深度人脸识别中的大间隔余弦损失

【论文导读】 深度卷积神经网络(DCNN)在人脸识别中已经取得了巨大的进展,通常的人脸识别的核心任务都包括人脸验证与人脸识别,涉及到特征判别。很多模型都是使用...

3595
来自专栏SIGAI学习与实践平台

理解Spatial Transformer Networks

随着深度学习的不断发展,卷积神经网络(CNN)作为计算机视觉领域的杀手锏,在几乎所有视觉相关任务中都展现出了超越传统机器学习算法甚至超越人类的能力。一系列CNN...

1195
来自专栏新智元

【无监督学习最新研究】简单的「图像旋转」预测,为图像特征学习提供强大监督信号

【新智元导读】在论文中,研究人员训练卷积神经网络来识别被应用到作为输入的图像上的二维旋转。从定性和定量两方面证明,这个看似简单的任务实际上为语义特征学习提供了非...

3346
来自专栏机器学习算法与Python学习

Pre-training到底有没有用?何恺明等人新作:Rethinking ImageNet Pre-training

使用基于ImageNet预训练(Pre-training)的网络已成为计算机视觉任务中一种常规的操作。何恺明等人在新作Rethinking ImageNet P...

182
来自专栏机器学习算法与Python学习

干货 | 深度学习之CNN反向传播算法详解

微信公众号 关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 前言 在卷积神经网络(C...

6297
来自专栏机器学习算法与Python学习

干货 | 深度学习之卷积神经网络(CNN)的前向传播算法详解

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 前言 在(干货 | 深度学习之卷积神...

3655
来自专栏人工智能LeadAI

TensorFlow从1到2 | 第四章: 拆解CNN架构

上一篇 《TensorFlow从1到2 | 第三章: 深度学习革命的开端:卷积神经网络》 快速回顾了CNN的前世今生。 本篇将拆开CNN架构,一探究竟。 ? 基...

3387

扫码关注云+社区