理解深层神经网络中的迁移学习及TensorFlow实现

什么是迁移学习

在深度学习中,所谓的迁移学习是将一个问题A上训练好的模型通过简单的调整使其适应一个新的问题B。在实际使用中,往往是完成问题A的训练出的模型有更完善的数据,而问题B的数据量偏小。而调整的过程根据现实情况决定,可以选择保留前几层卷积层的权重,以保留低级特征的提取;也可以保留全部的模型,只根据新的任务改变其fc层。

迁移学习的作用

那么对于不同的任务,为什么不同的模型间可以做迁移呢?上面提到了,被迁移的模型往往是使用大量样本训练出来的,比如Google提供的Inception V3网络模型使用ImageNet数据集训练,而ImageNet中有120万标注图片,然后在实际应用中,很难收集到如此多的样本数据。而且收集的过程需要消耗大量的人力无力(其实深度学习解决实际问题时,最好费时间的往往不是训练的过程,而是数据标记的过程),所以一般情况下来说,问题B的数据量是较少的。 所以,同样一个模型在使用大样本很好的解决了问题A,那么有理由相信该模型中训练处的权重参数能够能够很好的完成特征提取任务(最起码前几层是这样),所以既然已经有了这样一个模型,那就拿过来用吧。 所以迁移学习具有如下优势: 更短的训练时间,更快的收敛速度,更精准的权重参数。 但是一般情况下如果任务B的数据量是足够的,那么迁移来的模型效果会不如训练的到,但是此时起码可以将底层的权重参数作为初始值来重新训练。

TensorFlow实现Inception V3迁移学习

下面的例子中使用Google提供的Inception V3模型完成花的分类任务,迁移的过程保留了Inception V3的全部卷积层,只修改了最后的全连接层以适应新的分类任务。

import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile

#模型和样本路径的设置
#inception-V3瓶颈层节点个数
BOTTLENECK_TENSOR_SIZE = 2048
#瓶颈层tenbsor name
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
#图像输入tensor name
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'

# v3 path
MODEL_DIR = './datasets/inception_dec_2015'
# v3 modefile
MODEL_FILE= 'tensorflow_inception_graph.pb'

#特征向量 save path
CACHE_DIR = './datasets/bottleneck'
#数据path
INPUT_DATA = './datasets/flower_photos'

#验证数据 percentage
VALIDATION_PERCENTAGE = 10
#测试数据 percentage
TEST_PERCENTAGE = 10

#神经网络参数的设置
LEARNING_RATE = 0.01
STEPS = 4000
BATCH = 100

#把样本中所有的图片列表并按训练、验证、测试数据分开
def create_image_lists(testing_percentage, validation_percentage):

    result = {}
    sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
    is_root_dir = True
    for sub_dir in sub_dirs:
        if is_root_dir:
            is_root_dir = False
            continue

        extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']

        file_list = []
        dir_name = os.path.basename(sub_dir)
        for extension in extensions:
            file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
            file_list.extend(glob.glob(file_glob))
        if not file_list: continue

        label_name = dir_name.lower()

        # 初始化
        training_images = []
        testing_images = []
        validation_images = []
        for file_name in file_list:
            base_name = os.path.basename(file_name)

            # 随机划分数据
            chance = np.random.randint(100)
            if chance < validation_percentage:
                validation_images.append(base_name)
            elif chance < (testing_percentage + validation_percentage):
                testing_images.append(base_name)
            else:
                training_images.append(base_name)

        result[label_name] = {
            'dir': dir_name,
            'training': training_images,
            'testing': testing_images,
            'validation': validation_images,
            }
    return result

#函数通过类别名称、所属数据集和图片编号获取一张图片的地址
def get_image_path(image_lists, image_dir, label_name, index, category):
    label_lists = image_lists[label_name]
    category_list = label_lists[category]
    mod_index = index % len(category_list)
    base_name = category_list[mod_index]
    sub_dir = label_lists['dir']
    full_path = os.path.join(image_dir, sub_dir, base_name)
    return full_path

#函数获取Inception-v3模型处理之后的特征向量的文件地址
def get_bottleneck_path(image_lists, label_name, index, category):
    return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt'
#函数使用加载的训练好的Inception-v3模型处理一张图片,得到这个图片的特征向量。
def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):

    bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})

    bottleneck_values = np.squeeze(bottleneck_values)
    return bottleneck_values

#函数会先试图寻找已经计算且保存下来的特征向量,如果找不到则先计算这个特征向量,然后保存到文件
def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
    label_lists = image_lists[label_name]
    sub_dir = label_lists['dir']
    sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
    if not os.path.exists(sub_dir_path): os.makedirs(sub_dir_path)
    bottleneck_path = get_bottleneck_path(image_lists, label_name, index, category)
    if not os.path.exists(bottleneck_path):

        image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)

        image_data = gfile.FastGFile(image_path, 'rb').read()

        bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)

        bottleneck_string = ','.join(str(x) for x in bottleneck_values)
        with open(bottleneck_path, 'w') as bottleneck_file:
            bottleneck_file.write(bottleneck_string)
    else:

        with open(bottleneck_path, 'r') as bottleneck_file:
            bottleneck_string = bottleneck_file.read()
        bottleneck_values = [float(x) for x in bottleneck_string.split(',')]

    return bottleneck_values

#函数随机获取一个batch的图片作为训练数据
def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    for _ in range(how_many):
        label_index = random.randrange(n_classes)
        label_name = list(image_lists.keys())[label_index]
        image_index = random.randrange(65536)
        bottleneck = get_or_create_bottleneck(
            sess, image_lists, label_name, image_index, category, jpeg_data_tensor, bottleneck_tensor)
        ground_truth = np.zeros(n_classes, dtype=np.float32)
        ground_truth[label_index] = 1.0
        bottlenecks.append(bottleneck)
        ground_truths.append(ground_truth)

    return bottlenecks, ground_truths

#获取全部的测试数据,并计算正确率
def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    label_name_list = list(image_lists.keys())
    for label_index, label_name in enumerate(label_name_list):
        category = 'testing'
        for index, unused_base_name in enumerate(image_lists[label_name][category]):
            bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category,jpeg_data_tensor, bottleneck_tensor)
            ground_truth = np.zeros(n_classes, dtype=np.float32)
            ground_truth[label_index] = 1.0
            bottlenecks.append(bottleneck)
            ground_truths.append(ground_truth)
    return bottlenecks, ground_truths


def main():
    image_lists = create_image_lists(TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
    n_classes = len(image_lists.keys())

    # 读取已经训练好的Inception-v3模型。
    with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(
        graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])

    # 定义新的神经网络输入
    bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
    ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')

    # 定义一层全链接层
    with tf.name_scope('final_training_ops'):
        weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
        biases = tf.Variable(tf.zeros([n_classes]))
        logits = tf.matmul(bottleneck_input, weights) + biases
        final_tensor = tf.nn.softmax(logits)

    # 定义交叉熵损失函数。
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)

    # 计算正确率。
    with tf.name_scope('evaluation'):
        correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
        evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        # 训练过程。
        for i in range(STEPS):

            train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
                sess, n_classes, image_lists, BATCH, 'training', jpeg_data_tensor, bottleneck_tensor)
            sess.run(train_step, feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})

            if i % 100 == 0 or i + 1 == STEPS:
                validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
                    sess, n_classes, image_lists, BATCH, 'validation', jpeg_data_tensor, bottleneck_tensor)
                validation_accuracy = sess.run(evaluation_step, feed_dict={
                    bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth})
                print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%' %
                    (i, BATCH, validation_accuracy * 100))

        # 在最后的测试数据上测试正确率。
        test_bottlenecks, test_ground_truth = get_test_bottlenecks(
            sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor)
        test_accuracy = sess.run(evaluation_step, feed_dict={
            bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth})
        print('Final test accuracy = %.1f%%' % (test_accuracy * 100))

if __name__ == '__main__':
    main()

输出结果: . . Step 1000: Validation accuracy on random sampled 100 examples = 92.0% . . Step 2700: Validation accuracy on random sampled 100 examples = 94.0% . . Step 3999: Validation accuracy on random sampled 100 examples = 94.0% Final test accuracy = 92.7%

从结果可以看到,模型在很短的时间内即达到收敛并有着不错的准确率。最后点击这里下载整个工程,由于上传大小的限制,工程中的模型与数据集需要重新下载,路径下文件夹中已提供了下载方式。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来...

4335
来自专栏mathor

LeetCode200.岛屿的个数

 dfs做法,遇到1,就进入infect函数,将1及其周围是1的全部”感染“成2

693
来自专栏数说工作室

【SAS Says】扩展篇:IML(3):条件与循环

这是一段“资产收益率情景到评级情景的映射”的SAS程序,出自《金融计算与建模》(朱世武,282页): ? 代码中既用到了循环语句(do .. to ..),也...

35811
来自专栏机器学习算法与Python学习

Neural Networks for Machine Learning-1

Neural Networks for Machine Learning是深度学习的开衫鼻祖Geoffrey Hinton讲授的从神经网络到深度学习的一门庞大的...

3496

Keras中带LSTM的多变量时间序列预测

像长短期记忆(Long Short-Term Memory ) LSTM 递归神经网络这样的神经网络几乎可以完美地模拟多个输入变量的问题。

3.8K7
来自专栏企鹅号快讯

一次不成功的深度学习实践-微信跳一跳

最近微信的跳一跳小程序火了一把,所以前天也更新了微信玩了几盘,最多手动到200左右就不行了。 ? 后来准备用代码写个辅助工具,上Github一查,已经有人做出来...

2035
来自专栏AI科技大本营的专栏

用AI给黑白照片上色,复现记忆中的旧时光

【导读】我们知道,深度学习几乎已经应用在每一个领域,但如果我们能够构建一个基于深度学习的模型,让它能够给老照片着色,重现我们童年的旧回忆,这该多么令人激动啊!那...

2153
来自专栏码云1024

编程英语之KNN算法

984
来自专栏null的专栏

简单易学的机器学习算法——Label Propagation

一、社区划分的概述 对于社区,没有一个明确的定义,有很多对社区的定义,如社区是指在一个网络中,有一组节点,它们彼此都相似,而组内的节点与网络中的其他节点则不相似...

5988
来自专栏机器学习算法与Python学习

TensorFlow实战:SoftMax手写体MNIST识别(Python完整源码)

之前的文章 TensorFlow的安装与初步了解,从TensorFlow的安装到基本的模块单元进行了初步的讲解。今天这篇文章我们使用TensorFlow针对于手...

7626

扫码关注云+社区