ChainerCV︱堪比Opencv--深度学习工具库(Faster R-CNN、SSD 和 SegNet)

Preferred Networks 通过其研究博客发布了深度学习计算机视觉实用库 ChainerCV,它基于 Chainer,能够简化计算机视觉的训练和应用过程,并含有用于计算机视觉研究的必备工具集。 ChainerCV 提供了目标检测和语义分割模型(Faster R-CNN、SSD 和 SegNet)的实现。 ChainerCV 具有大量的已训练权重,可在运行时自动从网络上下载,因此用户无需担心下载或者记住已训练权重的文件位置。同样,ChainerCV 提供了简单统一的界面,从而为解决相同任务的不同模型执行推理。例如,Faster R-CNN 和 SSD 都具备一个被称作「预测」的方法,它可以接收图像并返回物体检测的结果。

参考机器之心:资源 | ChainerCV:基于Chainer的深度学习计算机视觉实用库(内含工具集)

ChainerCV 包含了一组指导计算机视觉研究的工具:

为一般视觉数据集(如 PASCAL VOC 任务的目标识别数据集)而构建的数据集加载器 能用于数据预处理/数据增强的转换 可视化 一般度量方法的评估代码

.

一、基本介绍

1、安装

pip install chainercv

2、一个DEMO——SSD物体检测的案例

20分类,voc07数据集训练,VGG16为基本

from chainercv.links import FasterRCNNVGG16, SSD300
# You can use Faster R-CNN instead of SSD.
# model = FasterRCNNVGG16(pretrained_model='voc07')
model = SSD300(pretrained_model='voc0712')


# `bboxes` is a list of numpy arrays containing coordinates of boundnig boxes
# around objects. `labels` and `scores` are class ids and confidence scores for
# the boxes.
bboxes, labels, scores = model.predict(imgs)  # imgs is a list of image

3、转化数据到指定训练格式

from chainer.datasets import get_mnist
from chainer.datasets import TransformDataset
from chainercv.transforms import random_rotate

dataset, _ = get_mnist(ndim=3)

def transform(in_data):
    # in_data is values returned by __getitem__ method of MNIST dataset.
    img, label = in_data
    img -= 0.5  # rescale to [-0.5, 0.5]
    img = random_rotate(img)
    return img, label
dataset = TransformDataset(dataset, transform)
img, label = dataset[0]

4、库中拥有的数据集

  • TransformDataset
  • CamVid
  • CUB
  • OnlineProducts
  • PASCAL VOC .

5、如何使用GPU

下载cupy库,pip install cupy, 当然预先需要配置好CUDNN

chainer.cuda.get_device_from_id(设备标号).use()
model.to_gpu()  # Copy the model to the GPU

.

二、用chainer实现图像分割SegNet

码云链接:https://gitee.com/mattzheng/chainercv_SegNet/tree/master github链接:https://github.com/mattzheng/chainer_SegNet 相关code都放在上面了.

1、 图像分割SegNet

相关参考

由chainercv自带的预训练模型

采用的数据集为:camvid

  • 数据集类别camvid_label_names:’Sky’, ‘Building’, ‘Pole’, ‘Road’, ‘Pavement’, ‘Tree’, ‘SignSymbol’, ‘Fence’, ‘Car’, ‘Pedestrian’, ‘Bicyclist’
  • 不同类别的颜色camvid_label_colors:(128, 128, 128), (128, 0, 0), (192, 192, 128), (128, 64, 128), (60, 40, 222), (128, 128, 0), (192, 128, 128), (64, 64, 128), (64, 0, 128), (64, 64, 0), (0, 128, 192)

其中需要注意的是:

  • (1)’pip install chainercv’好像没有load进去vis_semantic_segmentation模块,所以我的做法是从github中加到:/usr/local/lib/python3.5/dist-packages/chainercv/visualizations目录下(github该模块链接:https://github.com/chainer/chainercv/tree/master/chainercv/visualizations
  • (2)读图的时候,注意最好使用chainercv自带的读入函数utils.read_image

code展示:

import argparse
import matplotlib.pyplot as plot
import chainer
from chainercv.datasets import camvid_label_colors
from chainercv.datasets import camvid_label_names
from chainercv.links import SegNetBasic
from chainercv import utils
from chainercv.visualizations import vis_image
from chainercv.visualizations.vis_semantic_segmentation import vis_semantic_segmentation

# pre-model + read picture
img = utils.read_image('../../iamge.jpg', color=True)
model = SegNetBasic(n_class = 11,pretrained_model  = 'camvid')
labels = model.predict([img])

# plot
label = labels[0]  # (332, 500)
fig = plot.figure()
ax1 = fig.add_subplot(1, 2, 1)
vis_image(img, ax=ax1)
ax2 = fig.add_subplot(1, 2, 2)
vis_semantic_segmentation(label, camvid_label_names, camvid_label_colors, ax=ax2)
plot.show()

SegNetBasic函数解析(来源文档): camvid数据是类别较少的分类。 SegNetBasic(n_class=None, pretrained_model=None, initialW=None)函数,有三个参数,n_class是预训练模型的参数,pretrained_model是预训练模型位置 predict(imgs),imgs输入array的list

.

2、自己训练segnet模型

其他的,如果你要自己训练segnet模型,请参考该页面

First, move to this directory (i.e., examples/segnet) and run:

python train.py [--gpu <gpu>]

一个使用的demo:

wget https://raw.githubusercontent.com/alexgkendall/SegNet-Tutorial/master/CamVid/test/0001TP_008550.png
python demo.py [--gpu <gpu>] [--pretrained_model <model_path>] 0001TP_008550.png

模型评估的函数:

python eval_camvid.py [--gpu <gpu>] [--pretrained_model <model_path>] [--batchsize <batchsize>]

这里有一个已经训练好的模型,可以做个案例,预训练模型的下载链接为:https://www.dropbox.com/s/exas66necaqbxyw/model_iteration-16000 评估的结果展示:

官方自带的一个预训练模型后的模型使用demo:

import argparse
import matplotlib.pyplot as plot

import chainer

from chainercv.datasets import camvid_label_colors
from chainercv.datasets import camvid_label_names
from chainercv.links import SegNetBasic
from chainercv import utils
from chainercv.visualizations import vis_image
from chainercv.visualizations import vis_semantic_segmentation


def main():
    chainer.config.train = False

    parser = argparse.ArgumentParser()
    parser.add_argument('--gpu', type=int, default=-1)
    parser.add_argument('--pretrained_model', default='camvid')
    parser.add_argument('image')
    args = parser.parse_args()

    model = SegNetBasic(
        n_class=len(camvid_label_names),
        pretrained_model=args.pretrained_model)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        model.to_gpu()

    img = utils.read_image(args.image, color=True)
    labels = model.predict([img])
    label = labels[0]

    fig = plot.figure()
    ax1 = fig.add_subplot(1, 2, 1)
    vis_image(img, ax=ax1)
    ax2 = fig.add_subplot(1, 2, 2)
    vis_semantic_segmentation(
        label, camvid_label_names, camvid_label_colors, ax=ax2)
    plot.show()


if __name__ == '__main__':
    main()

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

猫狗大战识别准确率直冲 Kaggle Top 2%,手把手教你在 Keras 搭建深度 CNN

猫狗大战 数据集来自 kaggle 上的一个竞赛:Dogs vs. Cats,训练集有25000张,猫狗各占一半。测试集12500张,没有标定是猫还是狗。 ?...

6567
来自专栏CSDN技术头条

详解 BP 神经网络基本原理及 C 语言实现

BP(Back Propagation)即反向传播,指的是一种按照误差反向传播来训练神经网络的方法。而 BP 神经网络即为一种按照误差反向传播的方法训练的神经网...

2134
来自专栏AI研习社

Github 项目推荐 | 100+ Chinese Word Vectors 上百种预训练中文词向量

该项目提供了不同表征(密集和稀疏)上下文特征(单词,ngram,字符等)和语料库训练的中文单词向量。开发者可以轻松获得具有不同属性的预先训练的向量,并将它们用于...

1512
来自专栏刁寿钧的专栏

使用 Tensorflow 构建 CNN 进行情感分析实践

本次实验参照的是 Kim Yoon 的论文,代码放在我的 github 上,可直接使用。

2.6K1
来自专栏PaddlePaddle

【目标检测】SSD目标检测

场景文字识别 目标检测任务的目标是给定一张图像或是视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。对于人类来说,目标检测是一个非常简单的任务。...

4529
来自专栏Python中文社区

支持向量机原理推导(二)

專 欄 ❈ exploit,Python中文社区专栏作者。希望与作者交流或者对文章有任何疑问的可以与作者联系: Email: 15735640998@163....

1825
来自专栏云时之间

深度学习与神经网络:mnist数据集实现手写数字识别

对于mnist数据集,具体的一些介绍我这里就不搬运过来了,这里我直接说我们如何在TensorFlow上使用mnist数据集.

33911
来自专栏机器学习原理

深度学习——CNN(3)CNN-AlexNetCNN-GoogleNet其他网络结构

2265
来自专栏Petrichor的专栏

深度学习: Full Connection (全连接层)

在 Caffe 中,全连接层 的 type (层类型) 为 Inner Product 。 输出一个简单向量(把输入数据blobs的width和height...

4262
来自专栏PaddlePaddle

【文本分类】基于双层序列的文本分类模型

导语 PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提...

2743

扫码关注云+社区