深度学习的应用——检测糖尿病型视网膜症

  近日,谷歌在《美国医学会杂志》发表题为 “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic RetinoPathy in Retinal Fundus Photographs”的论文,正是谷歌研究人员提出的一种基于深度学习的算法,该算法能够在视网膜造影中对糖尿病视网膜病变的迹象做出解释,帮助医生克服资源短缺资困难,为更多的病人做出更专业的诊断。 论文:用于检测视网膜眼底照片中糖尿病性视网膜病变的深度学习算法的开发和验证   《Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs》

摘要:

重要性:深度学习是指能让算法通过学习能展现出预期行为的大量样本以进行自我编程的一系列方法,这让我们可以不再需要特定一些明确的规则。这些方法在医学成像上的应用还需要进一步的评估和验证。 目标:为了应用深度学习来创建一种能通过视网膜眼底照片自动检测糖尿病性视网膜病和糖尿病性黄斑水肿的算法。 设计和配置:我们使用了一种被称为深度卷积神经网络的专为图像分类而优化过的神经网络模型,该网络使用 128175 张视网膜图像的数据集进行了训练,其中的每一张图像都针对糖尿病性视网膜病变、糖尿病性黄斑水肿和图像等级进行了 3 到 7 次评估。所得到的算法使用 2016 年 1 月和 2 月的两个互相独立的数据集进行了验证,其中的每张图像测试所参考的标准是一个 7 或 8 人的美国认证眼科医生中大多数人的意见。 主要结果和措施:这种用于检测可发病的糖尿病性视网膜病(RDR/referable diabetic retinopathy,即中度和更糟糕的糖尿病性视网膜病)、可发病的糖尿病性黄斑水肿或同时两者的算法的灵敏度(sensitivity)和特异性(specificity)是基于眼科专家小组中大多数决策的参考标准。该算法在为两个开发集所选择的 2 个操作点上进行了评估,其中一个是为高特异性选择的,另一个则是为高灵敏度选择的。   **结果:**EyePACS-1 数据集包含了来自 4997 位病人(平均年龄 54.4 岁)的 9963 张图像;其中 62.2% 的女性;普遍是 RDR,683/8878 完全可分级的图像(占 7.8%)。Messidor-2 数据集有来自 874 位病人(平均年龄 57.6 岁)的 1748 ;42.6% 女性;普遍是 RDR,254/1745完全可分级的图像(占 14.6%)。为了检测 RDR,该算法在 EyePACS-1 上的受试者操作曲线( ROC 曲线)下的面积为 0.991(95% CI, 0.988-0.993),在 Messidor-2 上的 ROC 曲线下的面积为 0.990 (95% CI, 0.986-0.995)。使用第一个高特异性的操作切入点(operating cut point),对于 EyePACS-1 ,灵敏度为 90.3% (95% CI, 87.5%-92.7%)、特异性为 98.1% (95% CI, 97.8%-98.5%)。对于 Messidor-2,灵敏度为 87.0% (95% CI, 81.1%-91.0%)、特异性为 98.5% (95% CI, 97.7%-99.1%)。使用开发集第二个高灵敏度的操作点,对于 EyePACS-1,灵敏度为 97.5% 而特异性为 93.4%;对于 Messidor-2,灵敏度为 96.1% 而特异性为 93.9%。 结论与相关:在这项成人的糖尿病性视网膜眼底照片的评估中,基于深机器学习的算法对可疑糖尿病性视网膜病变检测时具有高灵敏度和特异性。 这将确认此算法应用在临床中的可行性,并确定与目前的眼科评估相比是否使用该算法可以改善治疗和诊断结果。   检测糖尿病性眼病的一种最常见的方法是让专科医生来检查眼后部的图像(图 1),然后再评估疾病是否存在及其严重程度。其中疾病的严重程度是由病变(如微动脉瘤、出血、硬渗出物等)的类型所确定的,这些症状表明了眼部之中的出血和液体渗出情况。然而解读这些照片需要经过专门的训练,而在世界上许多地区,还没有足够多合格的评估者能够筛选出存在发病风险的每个人。

  图 1:为了筛选 DR 而拍摄的视网膜眼底照片样本。左侧的图像是健康的视网膜(A),而右边的图像则是可引起糖尿病性视网膜病变的视网膜(B),可以看到存在出血状况(红点)。

  论文下载:http://jamanetwork.com/journals/jama/fullarticle/2588763

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏DT数据侠

前方高能!哈利·波特的咒语已破译(机器学习控必点)

《哈利波特与魔法石》推出的时候,谁也不曾料到,那个最初连一句“Leviosa”羽毛漂浮咒语都念不好的绿眼睛男孩,竟会陪伴我们这群麻瓜整整20年。

8600
来自专栏新智元

学习强化学习:代码、练习及答案(附下载)

【新智元导读】谷歌大脑的 Denny Britz 在他的个人博客上发表了一篇强化学习经验总结,包括好用的教程和教材,最关键的,是他经试着用 Python、Ope...

48370
来自专栏华章科技

2017年深度学习必读31篇论文

一如既往,首先,标准免责声明适用,因为今年仅与GAN有关的论文就超过1660篇。我肯定会有疏漏,试图缩减到每两周一篇论文,包含了Imperial Deep Le...

10430
来自专栏AI科技评论

开发 | 如何从零训练神经网络玩游戏?这里有一段详细的解读视频

AI科技评论消息,最近,Youtube 上的知名游戏博主 SethBling 训练了一个叫 MariFlow 的神经网络来玩 Mario Kart 游戏。在进行...

42170
来自专栏机器之心

学界 | ACL 2017中国研究论文解读:读懂中国自然语言处理前沿进展

机器之心原创 记者:高静宜 ACL(The Association for Computational Linguistics)是自然语言处理与计算语言学领域最...

29480
来自专栏新智元

【专栏】谷歌资深工程师深入浅析AlphaGo Zero与深度强化学习

【新智元导读】AlphaGo的巨大成功掀起了围棋界三千年未有之大变局,也使得深度强化学习(Deep Reinforcement Learning)渐为大众熟悉。...

43760
来自专栏人工智能头条

AlphaGo对战李世石谁能赢?两万字长文深挖围棋AI技术(二)

25050
来自专栏AlgorithmDog的专栏

迟蹭一个热点:自我对弈的 AlphaGo Zero

“不需要人类知识” 得以实现是因为模型+ MCTS 提升器 的训练方法。在利用模型的基础上,MCTS 提升器总是强于模型本身,从而为模型提升指明了方向;模型的提...

70810
来自专栏AI研习社

如何从零训练神经网络玩游戏?这里有一段详细的解读视频

Youtube 上的知名游戏博主 SethBling训练了一个叫 MariFlow 的神经网络来玩 Mario Kart 游戏。看懂他怎么做的,你也能举一反三。...

38270
来自专栏专知

【KR&R Workshop干货】74 页教程融合逻辑推理和深度学习

【导读】2018年度第16届KR大会将于10月27日-11月2日在美国亚利桑那州坦佩举行。KR大会是知识表示和推理方面最好的国际会议之一, 实际上也是传统AI(...

12720

扫码关注云+社区

领取腾讯云代金券