DL笔记:Neural Networks 神经网络

回顾 -DL笔记:机器学习和深度学习的区别

:听说深度学习的思想受到神经网络的启发,那是什么玩意儿?

:神经网络包括生物神经网络和人工神经网络。在生物神经网络中,每个神经元与其他神经元相连。它接收其他神经元的输入,当电位超过了某个阈值(threshold)而被「激活」时,会向相连的神经元「发射」(fire)信号。

:那跟机器学习有关系吗?机器没有生命啊……

Perceptrons 感知机

:参考生物神经网络,在计算机科学中,我们将独立的计算单元看做神经元。感知机 (Perceptron) 是神经网络的基本单位。每一个感知机都完成类似「给我一个数字,我告诉你它是正还是负」这样的简单任务。

比如说,我们把神经元看做包含一个 0 到 1 之间数字的小球:

神经元里面的数字叫激活函数 (Activation)。当数字超过某个阈值,比如说 0.5 时,我们就说这个神经元被激活了,它会输出 1 作为信号。如果神经元包含的数字小于 0.5,那它就输出 0,表示没有被激活。

这个神经元就是一个感知机。

一个感知机接收若干二进制输入,然后产生一个二进制输出:

:这小球长得倒是有那么一丢丢像神经元……

:在这个最简单的系统里,包含:

输入:这个神经元接收到的其他神经元的信号

判断器:激活函数

输出:1 表示 yes「发射」,0 表示 no「不发射」

:艾玛,这也叫简单?

:它其实是这个意思:

:好吧我错了……让我晕一晕

:其实主要看蓝色的字就好。神经元怎么计算输出呢?我们引入「权重」(weights),它表示从输入到输出的重要程度。权重的和如果大于阈值,就输出 1。

每一层神经元因为拥有上一层神经元的「经验」(上一层的输出),所以可以做出更抽象的「决策」。当我们把许多这样的神经元按一定的层次结构连接起来,就得到了人工神经网络(Artificial Neural Network)。

:ANN,那我可以叫它 安?

:你喜欢咯…… 其实所有的深度学习的神经网络,都可以抽象成三个部分:

除了输入和输出层,中间的层都叫隐层。深度神经网络就是隐层数量很多的神经网络,深度学习就是从多层神经网络中,自动学习出各种 pattern。

:666!能不能 input 废纸 output 比特币呀?

:……吃药时间到了

利用深度神经网络进行学习

:总结一下,对神经网络来说,输入层是数据集/变量,隐层是变量之间的关系(包含变量权重),形成高一级别的「模式」传递给下一个隐层,最后确定输出层的结果。

:为什么我总是听说「训练」神经网络好让它「学习」呢?

:训练神经网络的目标,其实就是计算和调整权重 weights,使得模型输出结果最接近真实的数据集。

:好抽象哦……

:举个例子,我们要预测房价的走势。假设知道房子大小可以预测房价,这个关系就可以用一个神经网络节点(node)来简单估计。

如果我们知道很多房子的信息怎么办呢?这时候就需要很多的节点,这些节点构成神经网络。房子的多种信息作为输入,房价的预测值作为输出,中间层(可以有多个)是用来计算出前面一层信息的权重,得出一定的模式,传导给下一层,直到最后得出预测值 y。

via:Neural Networks and Deep Learning Coursera

:好像有点明白了,让机器自己学习中间隐藏起来看不见的「规律」!

:再举个例子,图像识别是深度学习最广泛的应用之一,我们给系统看一张图,它能告诉我们这张图里有没有汪星人:

:哇,原来机器在背后做了这么多事情,我还以为机器都很聪明呢,原来它们只是比较勤奋哈哈哈

:你得到了它~

Ref

Neural networks and deep learning - http://neuralnetworksanddeeplearning.com/

Deep Learning Nanodegree Udacity - https://www.udacity.com/course/deep-learning-nanodegree-foundation--nd101

Neural Networks and Deep Learning Coursera - https://www.coursera.org/learn/neural-networks-deep-learning

本文来自企鹅号 - ArtxCode媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

【机器学习】机器学习算法基础知识

在我们了解了需要解决的机器学习问题的类型之后,我们可以开始考虑搜集来的数据的类型以及我们可以尝试的机器学习算法。在这个帖子里,我们会介绍一遍最流行的机器学习算法...

1988
来自专栏大数据挖掘DT机器学习

初识机器学习算法有哪些?

机器学习无疑是现在数据分析领域的一个重要内容,凡事从事IT工作领域的人都在平时的工作中或多或少的会用到机器学习的算法。 机器学习有很多算法,不过大的方面可分为两...

2653
来自专栏AI科技评论

开发 | 深度学习中的“深度”究竟怎么理解?

AI科技评论按:本文原作者 YJango,本文原载于其知乎专栏——超智能体。AI科技评论已获得原作者授权。 介绍 为了研究神经网络,我们必须要对什么网络是什么有...

2857
来自专栏机器学习算法全栈工程师

[视频讲解]史上最全面的正则化技术总结与分析!

作者:黄海安 编辑:栾志勇 PART 01 摘要 引言 正则化是一种有效的防止过拟合、提高模型泛化能力方法,在机器学习和深度学习算法中应用非常广泛,本文从机器学...

3686
来自专栏IT派

CNN入门再介绍

导语:学习深度神经网络方面的算法已经有一段时间了,对目前比较经典的模型也有了一些了解。这种曾经一度低迷的方法现在已经吸引了很多领域的目光,在几年前仅仅存在于研究...

3574
来自专栏机器学习算法与Python学习

直观理解深度学习的卷积操作,超赞!

近几年随着功能强大的深度学习框架的出现,在深度学习模型中搭建卷积神经网络变得十分容易,甚至只需要一行代码就可以完成。

680
来自专栏AI科技评论

​大牛的《深度学习》笔记,60分钟带你学完Deep Learning(下)

导读:昨天我们为大家带来了大牛Zouxy学习深度学习的笔记的上篇。今天我们继续为大家带来教程的下篇,让我们看看这位大牛在深度学习领域还有什么独到的理解~ |六、...

2936
来自专栏云时之间

机器学习常用算法分类(2)

感谢大家的关注,在上一篇文章中发布后很多热心的小伙伴建议我可以改进下分类的方式,一种是根据学习的方式分类,另外一种是根据类似的形式或者功能进行分类,我几天一直在...

2588
来自专栏人人都是极客

如何为你的机器学习问题选择合适的算法?

随着机器学习越来越流行,也出现了越来越多能很好地处理任务的算法。但是,你不可能预先知道哪个算法对你的问题是最优的。如果你有足够的时间,你可以尝试所有的算法来找出...

1239
来自专栏ATYUN订阅号

机器学习入门——使用python进行监督学习

? 什么是监督学习? 在监督学习中,我们首先要导入包含训练特征和目标特征的数据集。监督式学习算法会学习训练样本与其相关的目标变量之间的关系,并应用学到的关系对...

39810

扫码关注云+社区