神经网络和深度学习(一) ——深度学习概述

神经网络和深度学习(一)——深度学习概述

(原创内容,转载请注明来源,谢谢)

一、监督学习与神经网络

监督学习可以在一些地方应用,包括房价预测、广告精准定位、图像识别、声音识别、翻译、图像定位等。当需求更复杂时,可以考虑用神经网络来使用,包括标准神经网络(standard neural network)、卷积神经网络(CNN,ConvolutionalNeural Network)、循环神经网络(RNN,Recurrent Neural Networks )、复合神经网络等。

二、各类NN

1、神经网络

神经网络包含输入层、输出层、隐藏层等,通过隐藏层的处理,得到输出的结果。其主要运用到BP算法来调优,即反向传播算法,不断的前向迭代得到结果,再反向传播纠正结果。

2、卷积神经网络

卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置。

CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。

CNN的有三个重要的思想架构:局部区域感知;权重共享;空间或时间上的采样。

局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础;而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。

CNN的另一种图示方式:

3、循环神经网络

RNN是包含循环的网络,允许信息的持久化。循环可以使得信息可以从当前步传递到下一步,RNN可以被看做是同一神经网络的多次赋值,每个神经网络模块会把消息传递给下一个。链式的特征揭示了 RNN 本质上是与序列和列表相关的。他们是对于这类数据的最自然的神经网络架构。

关于RNN,还有更进一步的思想,叫做LSTM(long-shortterm memory)——长短期记忆网络,其是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。

三、深度学习优势

监督学习中,主要处理的数据类型有两种:结构化数据和非结构化数据。

结构化数据,就是类似数据库表的形式,指定一些特征值和一些结果。计算机一直以来都很擅长与处理这类内容。

非结构化数据,例如声音、图像、文字等,这些人类比较擅长识别,但是对于机器来说处理过程比较复杂。

复杂的过程意味着大量复杂的计算,深度学习相比普通的机器学习,有效解决此类问题。

四、深度学习兴起的原因

深度学习,并不是近期才有的概念,但是最近才开始火起来。主要原因有两个方面:一是数据量越来越大,导致原有的算法处理大量数据问题较多;二是大型神经网络的构建,使得有更好的算法来快速处理问题。

但是,对于数据量不大的情况,深度学习未必会比普通的机器学习算法快,反而有可能诸如SVM等算法效果更好。

五、神经网络与RELU

对于机器学习,无论是logistic回归、SVM还是浅层神经网络的BP算法等,很经常提到一个激活函数——sigmoid函数,y=1/(1+e-z),用于控制输出的值在0~1之间。另外还有类似tanh函数,可以控制输出的值在-1~1之间,其性质是一样的。如下图所示:

但是,这两个激活函数有个问题。例如sigmoid,在函数值趋于0或者趋于1时,变换率非常小,则偏导数很小,优化起来速度会非常慢,不利于优化。

深度学习中,大量的神经元,需要大量的这种计算,因此用了一个改进的函数来作为激活函数,称为ReLU(rectified linear union),修正的先行单元,其小于某个值时都是0,大于时会是线性增长,如下图所示:

多层神经网络,则分为输出层、隐藏层1、隐藏层2、输出层等,如下图所示:

六、总结

这是深度学习微专业的第一课,算是一个概述类的课程,对神经网络有个非常初步的了解,后面要开始深入的学习了。

——written by linhxx 2018.01.28

原文发布于微信公众号 - 决胜机器学习(phpthinker)

原文发表时间:2018-01-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能LeadAI

逻辑回归(LR)个人学习总结篇

线性模型LR(没有考虑特征间的关联)——>LR +多项式模型(特征组合,不适用于特征稀疏场景,泛化能力弱)——>FM(适用于稀疏特征场景*,泛化能力强)——>F...

872
来自专栏AI科技评论

​大牛的《深度学习》笔记,60分钟带你学完Deep Learning(下)

导读:昨天我们为大家带来了大牛Zouxy学习深度学习的笔记的上篇。今天我们继续为大家带来教程的下篇,让我们看看这位大牛在深度学习领域还有什么独到的理解~ |六、...

2926
来自专栏新智元

Reddit 讨论:Hinton的Capsule网络真的比CNN效果更好吗?

【新智元导读】Hinton 提出用 Capsule 这个概念代替反向传播,引起广泛关注。本文来自Reddit上“Capsule networks为何与众不同,它...

2987
来自专栏小石不识月

机器学习中分类与回归的差异

在分类(Classification)问题与回归(Regression)问题之间,有着一个重要的区别。

1889
来自专栏技术小站

吴恩达深度学习笔记 4.1~4.8 深层神经网络

深层神经网络与浅层神经网络的区别是:隐藏层比浅层神经网络多,从命名规则上来说,有1,2,5个隐藏层的神经网络可以称为1 hidden layer,2 hidde...

651
来自专栏AI研习社

视频 | 手把手教你构建图片分类器,备战 kaggle 大赛!

AI 研习社按:今天为大家带来硅谷深度学习网红 Siraj 的一则教学视频:如何从零开始构建一个图像分类器来对猫和狗进行分类。(内心OS:终于要开始图像部分了!...

3204
来自专栏包子铺里聊IT

经典智能算法快速入门之神经网络——技术篇

在上一篇文章里,小编给大家概括地介绍了下神经网络的历史和应用。这次,小编要给大家细细讲解下神经网络的组成,和几种常见神经网络的模型及其适用领域。 基本组成 顾名...

3489
来自专栏机器之心

教程 | 拟合目标函数后验分布的调参利器:贝叶斯优化

3675
来自专栏机器学习算法与Python学习

Word2Vec —— 深度学习的一小步,自然语言处理的一大步

1465
来自专栏数据派THU

计算机视觉怎么给图像分类?KNN、SVM、BP神经网络、CNN、迁移学习供你选(附开源代码)

原文:Medium 作者:Shiyu Mou 来源:机器人圈 本文长度为4600字,建议阅读6分钟 本文为你介绍图像分类的5种技术,总结并归纳算法、实现方式,并...

36810

扫码关注云+社区