游戏中的深度学习与人工智能(答疑)

Q1:机器学习和深度学习在文本日志分析领域有做得比较好的案例吗?面对这么庞大的日志,貌似目前都没有一个很好的解法,这个相信很多同学都碰到类似的问题,不管监督还是非监督学习,对于未知文本分析都起不了很好的作用,总不能人肉长期来分析,也不是特别合适,不知道老师对这方面的看法是如何的?

关于文本挖掘是有专门的领域来研究的,如果是形态比较好的日志,那么分析的手段就比较多了,因为里面会有大量的带有强烈的提示性的ERROR或者WARNING等。如果是文字比较多,那么也是NLP研究的一个范畴。这类应该还是比较典型的监督学习。目前如果使用深度学习做文本分析,还是需要由人来大量标定样本,进而让分类器识别相应的文本分类。如果是NLP,那么主要也是靠分词以及文章类别的标定等方法。聚类也是可以用的,不过聚类只能找出那些彼此近似的日志,这种情况下研究离群点可能更合适,看看这些点是不是代表着典型的且严重的问题,拿这些作为样本来训练。

Q2:高老师,请问,深度学习应用于游戏的最大特点和难点是什么?

深度学习的特点是可以End-to-End,那么在以图片或者视频作为输入的场景中,显然巨大的样本维度是一个非常难以应付的问题。所以在这种情况下,我们通常都会考虑采用降采样的方法来降维,来让网络收敛快一些。其次,对于一些演化太过复杂的游戏来说,越丰富的信息也就意味着需要越多的样本进行训练,而且数量是几何级的,这个也是比较大的问题。当然,卷积网络肯定是非常好的选择,因为它的降采样功能本身有着很好的抗过拟合,和收敛快的效果,只不过在不同的游戏中,网络的设计需要多种尝试才能确定,没有固定的套路来一步到位。这个也是比较麻烦的事情。

Q3:AI如何在游戏中自动进化?

这个比较容易,简单说就是随着样本越来越多,那么AI在这其中就能学到越来越多,越来越靠谱的决策方法。

Q4:像星际这样的游戏,如何把大量的状态映射到一定的矩阵中?

FC游戏的强化学习,我的TEAM已经在尝试中了,其实原理是一样的,只不过显然星际争霸这样的游戏更为复杂。所以第一肯定是考虑采用带有池化层的卷积网络来进行降维以及特征提取,其次的话可以考虑人为做一些降采样的功能,比如可以通过多个网络来进行不同的动作。有的网络用来标定其中的NPC或者PLAYER的位置以及分类,这个可以考虑用RCNN来做;有的网络用来获取当前处于整个大地图的位置;有的用来获取玩家当前的各种资源状态等等……这些网络都是有着极好的而且极大效率的降维功能,对于整个算法的训练收敛是有帮助的。所以,这些方式都应该是我们优先尝试的对象。

如果各位还有别的疑问,请在评论区提出。


原文发布于微信公众号 - 奇点(qddata)

原文发表时间:2018-02-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

职场 | 备好数据后,数据科学家还要做什么?

1487
来自专栏AI科技评论

论文控|从扎克伯格账号被黑说起,谷歌神经网络如何实现“更安全”的验证

GAIR 今年夏天,雷锋网将在深圳举办一场盛况空前的“全球人工智能与机器人创新大会”(简称GAIR)。大会现场,谷歌,DeepMind,Uber,微软等巨头的人...

35416
来自专栏人工智能头条

AutoML 详解及其在推荐系统中的应用、优缺点

可能有人还记得一个非常古典的、关于推荐系统的例子:超市把尿布和啤酒摆一起,显著的增加了二者的销量。原因是很多买酒的父亲们看到旁边刚好有尿布,就回想起临行前,孩儿...

1701
来自专栏新智元

【卷积神经网络失陷】几行Python代码搞定,偏要用100个GPU!

【新智元导读】Uber近日一篇论文引起许多讨论:该论文称发现卷积神经网络一个引人注目的“失败”,并提出解决方案CoordConv。论文称CoordConv解决了...

1580
来自专栏PPV课数据科学社区

【学习】Netflix工程总监眼中的分类算法:深度学习优先级最低

【编者按】针对Quora上的一个老问题:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain近日给出新的解答,他根据奥卡姆剃刀原...

3056
来自专栏AI科技大本营的专栏

精选机器学习开源项目Top10

【导读】过去一个月里,我们对近 250 个机器学习开源项目进行了排名,并挑选出热度前 10 的项目。这份清单的平均 github star 数量高达919,涵盖...

1522
来自专栏专知

【论文笔记】强化学习+对抗,面向任务的神经对话模型新思路

Adversarial Learning of Task-Oriented Neural Dialog Models

1522
来自专栏决胜机器学习

机器学习(二十二) ——推荐系统基础理论

机器学习(二十二)——推荐系统基础理论 (原创内容,转载请注明来源,谢谢) 一、概述 推荐系统(recommendersystem),作为机器学习的应用之一,...

3553
来自专栏机器之心

关系推理水平超越人类:DeepMind展示全新神经网络推理预测技术

选自DeepMind 作者:Adam Santoro等 机器之心编译 参与:机器之心编辑部 想象一下在阿加莎·克里斯蒂(《东方快车谋杀案》作者)的侦探小说里收...

2746
来自专栏贾志刚-OpenCV学堂

谷歌机器学习速成课程系列一

谷歌tensorflow官方推出了免费的机器学习视频课,总计25个课时,支持中英文语言播放、大量练习、实例代码学习,是初学tensorflow与机器学习爱好者必...

1403

扫码关注云+社区

领取腾讯云代金券