干货:必读机器学习书籍一览表

【导读】转眼之间春节假期已所剩无几,大家是否也开始制定新一年的学习计划?本文就为大家推荐一个机器学习书单,其中大多数可以免费观看,并附上pdf链接。书单内容包括但不局限于:机器学习、深度学习、数据挖掘、贝叶斯理论、统计学习等。都是领域内最好的学习资料,绝对值得阅读,大家可以根据自己的研究方向自行选读。

机器学习是人工智能的应用,它使系统能够自动地从经验中学习和改进。在这篇文章中,我们列出了一些最好的免费机器学习书籍,绝对值得阅读。

Mining of Massive Datasets (海量数据挖掘)

作者: Jure Leskovec, Anand Rajaraman, JeffUllman

http://mmds.org/#ver21

介绍:

基于斯坦福计算机科学课程CS246和CS35A,这本书的目标受众是计算机科学的本科生,没有要求必须的先修知识。这本书已由剑桥大学出版社出版。

An Introduction to Statistical Learning (with applications in R) (统计学习引言,R语言版)

作者:Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani

http://www-bcf.usc.edu/~gareth/ISL/

介绍:

这本书中包含了统计学习方法的前言,还有一些R实验。

Deep Learning (深度学习),花书

作者:Ian Goodfellow and Yoshua Bengio andAaron Courville

http://www.iro.umontreal.ca/~bengioy/talks/lisbon-mlss-19juillet2015.pdf

介绍:

这本深度学习的教科书是专为那些在机器学习和深度学习的早期阶段读者而设计的。这本书的在线版现在免费提供。

Bayesian methods for hackers

作者:Cam Davidson-Pilon

介绍:

本书从计算的角度介绍了贝叶斯方法和概率编程。这本书对那些掌握数学知识的人来说简直是天赐之物。

Understanding MachineLearning: From Theory to Algorithms(理解机器学习:从理论到算法)

作者:Shai Shalev-Shwartz and Shai Ben-David

介绍:

对于精通数学的人来说,这是理解机器学习背后的魔法的最好的书籍之一。

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

Deep Learning Tutorial(深度学习教程)

http://deeplearning.net/tutorial/deeplearning.pdf

作者:LISA lab, University of Montreal

介绍:

如果你愿意进入这个领域,而且想要免费的资源,那么使用Theano的深度学习教程是必须的。

Scikit-Learn Tutorial: Statistical-Learning for Scientific Data Processing(Scikit-Learn教程:科学数据处理的统计学习方法)

作者:Andreas Mueller

http://gael-varoquaux.info/scikit-learn-tutorial/

介绍:

探索统计学习,本教程以统计推断的目的解释机器学习技术。本教程可以免费在线观看。

Machine Learning (An Algorithmic Perspective) (机器学习:算法视角)

作者:Stephen Marsland

https://seat.massey.ac.nz/personal/s.r.marsland/MLBook.html

介绍:

这本书对工程和计算机科学专业的学生学习机器学习和人工智能有很大的帮助。这本书由CRC出版社出版,由Stephen Marsland撰写,不幸的是这本书不是免费的。但是,我们强烈建议您阅读。而且,所有的python代码都可以在网上找到。这些代码是python学习的一个很好的参考源。

Building Machine Learning Systems with Python(用Python构建机器学习系统)

作者:Willi Richert and Luis Pedro Coelho

http://totoharyanto.staff.ipb.ac.id/files/2012/10/Building-Machine-Learning-Systems-with-Python-Richert-Coelho.pdf

介绍:

这本书也不是免费的,但这是一个实践指南,可以充分利用python学习机器学习。

这些是我们推荐的最好的机器学习书籍。 如果您有其他的想法,可以在下面评论一下你心中的一些好的机器学习书籍的列表。

参考链接:

https://towardsdatascience.com/list-of-free-must-read-machine-learning-books-89576749d2ff

原文发布于微信公众号 - 专知(Quan_Zhuanzhi)

原文发表时间:2018-02-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【AI蝙蝠侠vs超人】LeCun论战Manning:语言是通用智能的钥匙?

来源:abigailsee.com;Stanford AI Sloan 作者:Abigail See 编译:闻菲、刘小芹 【新智元导读】二月初,成为Facebo...

40914
来自专栏新智元

【重磅】灵长类动物脸部识别算法被破译,大脑黑箱或根本不存在

【新智元导读】发表在 Cell 的一项研究揭示了人脸识别的具体神经元活动过程。对猕猴的实验表明,对脸部的识别是由大脑中 200 多个不同神经元共同编码完成的,每...

3966
来自专栏人工智能头条

CVPR 2018 上10篇最酷论文,圈儿里最Cool的人都在看

1522
来自专栏机器学习算法与Python学习

想转行人工智能?机会来了!!!

1905
来自专栏大数据挖掘DT机器学习

一战成名,用户贷款风险预测 参赛代码与数据集分享

队伍名“一战成名” 最终线上排名第七。 ? 任务 融360与平台上的金融机构合作,提供了近7万贷款用户的基本身份信息、消费行为、银行还款等数据信息,需要参...

7057
来自专栏机器之心

学界 | 完善强化学习安全性:UC Berkeley提出约束型策略优化新算法(附代码)

选自BAIR Blog 作者:Joshua Achiam 机器之心编译 参与:Smith、黄小天、邱陆陆 强化学习作为深度学习的一个强大分支成就卓然,在电子游戏...

3986
来自专栏AI科技评论

学界 | 在深度学习时代用 HowNet 搞事情

2017 年 12 月底,清华大学张钹院士做了一场题为《AI 科学突破的前夜,教授们应当看到什么?》的精彩特邀报告。他认为,处理知识是人类所擅长的,而处理数据是...

42010
来自专栏企鹅号快讯

2018年,你最需要的机器学习资料整理分享

2017年是机器学习大爆发的一年,互联网巨头公司纷纷提出“ALL IN AI”理念。2018年之初,分享收集的机器学习最权威的资料,新年祝大家沉迷学习不能自拔。...

2308
来自专栏企鹅号快讯

Yann LeCun力挺前AAAI主席,批判深度学习的Marcus遭怒怼

Yann LeCun、Tom Dietterich、Gary Marcus在NIPS 2015上讨论我们周围的算法,吴恩达同台 昨天,纽约大学教授、Uber A...

1958
来自专栏PPV课数据科学社区

正态分布为什么常见?

统计学里面,正态分布(normal distribution)最常见。男女身高、寿命、血压、考试成绩、测量误差等等,都属于正态分布。 >>>> ? 以前,我认...

2575

扫码关注云+社区

领取腾讯云代金券