资源 | 一文盘点10大移动端机器学习框架

选自hopinfirst.com

作者:James Tredwell

机器之心编译

参与:路雪、黄小天

本文介绍了适用于移动端的 10 个机器学习框架,包括针对计算机的机器学习框架和针对手机端的优化性能的框架。

当今,机器学习及其相关框架和工具包已经成为业务概念,消除了对人工及劳动密集型任务的需求,并且相较于人类而言可以极快地从海量数据中提取出有价值信息。

尽管我们已经可以在台式计算机和性能优良的笔记本上运行神经网络,但是智能手机和平板电脑的原始处理能力太低,无法本地运行算法。因此,智能手机中的 AI 应用通常是借助于向一个更强大的处理服务器发送 API 请求,由其运行实际的计算,并把数据输出给手机来执行。

这就是为什么本文列表分为两部分:针对计算机的更强大的机器学习框架和针对移动端的优化性能的框架。

计算机机器学习框架

该列表包含运行在适当硬件上的一般框架,可以处理海量的数据集。

谷歌 TensorFlow

GitHub 中有超过一半的机器学习项目使用了 TensorFlow,其完整版本是当下最为流行的 ML 工具集。借助来自第三方开发者的数百个附件、插件和模块,TensorFlow 几乎可以完成所有的 ML 任务,诸如产品推荐、语音识别、人脸识别和物体识别等。

亚马逊机器学习(AML)

亚马逊机器学习来自亚马逊社区,通过教程、指南等资源帮助开发者构建复杂而高级的 AI。AML 不仅具备训练神经网络的一系列常用功能,还可以在 AWS cloud 上实现部署,并具备连接 Alexa 或其他亚马逊服务的完整 API。该社区同样在实例和附件方面做出了大量贡献。

微软 CNTK

CNTK 是由微软开发的强大工具包,它在企业级应用上尤其常用,所有最常用的神经网络(如前馈神经网络、循环神经网络、并行神经网络)都可以使用同样的代码开发。大量内置功能简便了验证、API 和服务器本地化设置。

MXNet

MXNet 是该列表中的第一个 Apache 项目;它是一个有前景、活跃的框架,可应用于移动端,即你可以在任何安卓或 iOS 设备上训练数据、运行计算集(computed set),该框架也可在 Linux 和 Windows 计算机上运行。MXNet 在 GitHub 上有 12000 多个 star,是 GitHub 最流行的框架之一,部分原因在于它可以使用不同的语言来写,如 Python、Rust、Scala、Go 和 JavaScript,还有一部分原因是它具备大量的社区内容。

MLlib

Apache 在 AI 和 ML 很活跃。该框架具备大量工具和包,允许程序员构建智能应用。MLlib 可以在 Hadoop 或 Apache Spark 上轻松设置,它能做的内容不仅仅是与 API 进行通信,可用于图像分类、线性回归、决策树等等。

移动端机器学习框架

谷歌 TensorFlow Lite

目前最完整的免费移动端解决方案就是 TensorFlow Lite,它最初适用于安卓机,不过一些人也在 iOS 设备上实现了该框架。其关键特征是低延迟进行实时图像处理、可用于安卓机的硬件加速,以及使计算速度快于 TensorFlow 完整版的量化内核(quantized kernel)。

Caffe2

Caffe2 从 Caffe 发展而来,使用模块化方法进行机器学习。该精简版允许选择任意给定项目所需的模型和工具,无需添加额外的 bloat。其主要特征是移动端部署,允许开发者在手机上实时运行不同的神经网络计算。

Bender

该框架很有前景,使用了不同的方法和苹果自己的 Core ML。该框架使用 iPhone 的移动 GPU 着色器工具包 Metal Performance Shaders,允许 iPhone 用户利用 GPU 运行机器学习算法,尽管它主要还是用于运行预训练数据,像 Core ML 一样。

Quantized-CNN

如名称所示,该框架适合运行并行神经网络。对于为计算机构建的大型框架,Quantized-CNN 只在准确率上稍有降低,为在移动设备上完全运行图像分类提供了轻量级的解决方案。

苹果 Core ML

随着机器学习和移动应用的流行,苹果发布了 Core ML 库,允许移动应用开发者在强大的计算机上训练模型,然后将其保存在手机上,并运行模型的优化版本。

结论

看起来大多数企业仍然使用 API 调用来与强大的服务器进行通信,这种方法仅将最少量的信息发送回手机进行计算。

因此,尽管我们了解了很多专门适用于手机和平板的精简版框架,但是距离能够本地运行所有计算的强大处理器似乎还有一段距离。

原文链接:http://hopinfirst.com/top-10-machine-learning-frameworks-mobile-apps/?utm_campaign=Submission&utm_medium=Community&utm_source=GrowthHackers.com

本文为机器之心编译,转载请联系本公众号获得授权。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2017-12-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

PyTorch vs. TensorFlow月度使用体验总结

日前,英伟达深度学习项目实习生Dominic Monn在medium上发文总结了他使用PyTorch和TensorFlow的一些体会,在文章中,他从安装、使用、...

40115
来自专栏目标检测和深度学习

SCI论文快速翻译,免费无限制!OCR识别,阅读文献必备!

科研人员在阅读外文文献时,经常会碰到看不懂的专业词汇或语句,需要将其复制到在线词典翻译。

3262
来自专栏IT派

从人脸识别到情感分析,50个机器学习实用API

API是一套用于构建应用软件程序的规范,协议和工具。在本文中,我们从2017年的清单中删除了停用的API,并利用新元素对其进行了更新。并且,所有的API被归类到...

1181
来自专栏应兆康的专栏

Python-贝叶斯实战垃圾邮件过滤(大量数据)

Github: https://github.com/yingzk/MyML 博 客: https://www.yingjoy.cn/ 环境 Python 3....

3206
来自专栏AI科技大本营的专栏

重磅 | TensorFlow 2.0即将发布,所有tf.contrib将被弃用

上周,谷歌刚刚发布了 TensorFlow 1.10.0 版本(详见《TensorFlow 版本 1.10.0 发布》),如今,TensorFlow 的 2.0...

813
来自专栏数据科学与人工智能

【应用】信用评分:第9部分 - 计分卡实施:部署,生产和监测

“知识不是力量,知识的实施就是力量。” - 评分卡或信贷策略的真正好处仅在实施时明显。 CRISP-DM框架的最后阶段 - 实施 - 代表从数据科学领域向信息技...

1275
来自专栏应兆康的专栏

Python-贝叶斯实战垃圾邮件过滤(大量数据)

Github: https://github.com/yingzk/MyML 博 客: https://www.yingjoy.cn/ 环境 Python 3....

56111
来自专栏AI科技大本营的专栏

TensorFlow 1.0 正式发布

在刚刚过去的一年里,从语言翻译到对皮肤癌的早期检测和对糖尿病患者失明的防护,TensorFlow 对研究人员,工程师,艺术家,学生和其他各界人士在各领域的进步都...

36113
来自专栏机器之心

陈天奇等人提出TVM:深度学习自动优化代码生成器

3839
来自专栏大数据文摘

从人脸识别到情感分析,这有50个机器学习实用API!

1515

扫码关注云+社区

领取腾讯云代金券