5万余首圣诞歌词数据包+Kaggle数据科学家的脑洞=?(附数据包+代码)

作者:eoda GmbH

编译:大山、ShanLIU、Harry

昨天在python给你的圣诞帽上意犹未尽的动手党(点击查看相关文章),今天的话题依然和圣诞节有关。

前几天,文摘菌发现了一个Kaggle上的圣诞歌曲数据礼包。这里有你能想到所有的圣诞歌曲,总计超过5万首。而Kaggle上的数据科学家用各种方式要把它们玩儿坏了,一起看看有哪些有趣的结论!

又是圣诞节,有没有被大街小巷的圣诞歌曲洗耳朵?有没有想过这些圣诞歌曲到底有什么魔力?他们的歌词又有什么共同点?

我们把所有跟圣诞有关的歌曲都打包起来,总计超过5万首歌曲。在这篇文章里,文摘菌将首先用朴素贝叶斯对这些歌曲文本进行全面分析,来快速识别出,到底什么样的歌曲才能被成为真正意义上的圣诞歌曲。

之后,我们还可以一起看看,kaggle上的数据科学家用这个数据包分析出了的这些有趣的结论:

  • 与圣诞关系最密切的歌词TOP20;
  • 圣诞歌产量最高的歌手TOP20;
  • 圣诞歌词中,什么样的双音节词最受欢迎?

这个数据集取自55000多段歌词,同时涵盖了超过55000首歌曲。你能想到的全都有,包括Jinglebell :)如下:这是一个有55000多行和4列的数据框:

  • 艺术家
  • 歌曲
  • 链接
  • 文本

我们的目标是对歌曲文本进行全面分析,帮助我们快速识别出圣诞歌曲。为此,我们首先在数据框中添加一个额外的列,给每首歌曲一个“圣诞”或“非圣诞”的标签,也就是歌词中包含“Christmas”,“Xmas”或“X-mas”的歌曲将被标记为“圣诞”,不包含的则标成“非圣诞”。

这还只是标签的初始化,我们之后会将朴素贝叶斯应用于一组训练集以识别其他圣诞歌曲。但现在,我们将通过一些直观的描述性方法来探索数据集。看看会得到一些什么有趣的结果。

探索初始的圣诞歌曲

清理 & 标记化

首先我们从数据清理和标记化开始~随后,圣诞歌曲将被选中并被保存为一个变量

相关性分析

现在我们可以从不同的角度由相关性来分析原始的圣诞歌曲。接下来,我们运用networkD3 html widget将相关性可视化:具有相同总连接数的节点将被赋予相同的颜色,而边的颜色意味着由两个节点共享的公共邻居的数量。而且,一个节点的大小表明它的中心性,中心性由中间性(即通过它的最短路径的数量)定义。在两个节点之间的距离是1的最小最大变换减去相关度,这是有意义的,因为直观来说,相关性越高,两个节点应该越近。而且,距离越短,边缘越宽。

请注意,相关性永远要基于歌词才行。

单词之间的相关性

出现超过100次的单词与至少另一个相关度大于0.55的单词相关。

歌曲之间的相关性

一首歌曲与其他至少3首相关的歌曲之间的相关性大于0.75-通过这个方法,我们可以检测到类似或被略微修改的歌曲。

特定的词之间的相关性

艺术家之间的相关性

词云

原始圣诞歌曲的词云

朴素贝叶斯

朴素贝叶斯是一种流行的监督机器学习算法,它能处理具有大量特征的分类问题。它是基于一个类,这个类的特征是被假定独立分布的,所以从这种意义上说,它是“朴素”的。在我们的例子中,我们想知道,给定一组特征之后,即文档中单词的tf-idf,一首歌曲是否应该被朴素贝叶斯分类为圣诞歌曲。

构造最大似然估计的难点是先验分布的选择,即类的概率分布。通常假定它是按类频率均匀分布或估计的。在我们的例子中,我们使用了先验分布的多项式分布和均匀分布,这意味着我们在没有进一步信息的情况下对歌曲的分类是没有偏见。

识别隐藏的圣诞歌曲

我们识别出2965首隐藏的圣诞歌曲,在最初的500首圣诞歌曲中,有2首歌曲被朴素贝叶斯拒绝认定为圣诞歌曲。

探索隐藏的圣诞歌曲

因此我们已经成功地识别出一些宗教圣诞歌曲,它们的标题通常不包含“Christmas”或“X-mas”单词。

潜在狄利克雷分布&t统计随机邻域嵌入

数据准备

只有包括隐藏在内的圣诞歌曲的前300项特征,将被用来计算Rtsne和LDA,否则存储空间会不足。

LDA

LDA是潜在狄利克雷分布,2003年在Blei, Ng, Jordan的论文中被提出。这是一个生成语料库的概率模型,其中的文档被表示为关于潜在主题的随机混合物,一个单独的文档通常只有几个主题,被分配了不可忽视的概率。此外,每个主题的特点是单词的分布,通常只有一小部分词被大概率分配给某个主题。变分期望最大化算法或吉布斯抽样用于参数的统计推断。

LDA需要固定数量的主题,也就是说,在应用该算法之前,应该先知道主题的数目。然而,有可能通过不同的性能度量来确定主题的最佳数量,比如Nikita,用ldatuning包。

因此,我们将选择8作为主题的最佳数量。

我们可以使用tidytext包 来检查每个文档的主题分布,即对于每个文档,它属于从1到8某个主题的概率的总和等于1。

同样,我们也可以获得每个主题词的概率分布,即每个主题产生不同的单词的概率总和等于1。

每个主题的关键词是:

t-SNE

由van der Maaten和Hinton于2008年开发,t-SNE代表统计随机邻域嵌入,这是一种降维技术,用公式表示出捕获的原始数据点的局部聚类结构。它是非线性的和不确定性的。

下面的计算大约需要30分钟。

如果我们重复以上过程在不只一次迭代上呢?

到目前为止,我们只运行了一次迭代的朴素贝叶斯。然而,我们可以为多个迭代重复这个过程,即训练一个朴素贝叶斯分类器并重新标记所有的假阳性为隐藏圣诞/圣诞,所有的假阴性为隐藏非圣诞/非圣诞,一遍遍重复进行。

首先,我们再次准备数据以避免错误。

运行10次迭代。

然后,精度和f1得分开始时单调增长,然后收敛到大约0.95的值,这意味着没有遗留很多待检测的“隐藏圣诞歌曲”和“隐藏非圣诞歌曲”。然而,在这个过程中,我们始终相信朴素贝叶斯分类器是100%准确的,这实际上几乎是不可能的。因此,在每一次迭代中,有一些歌曲被朴素贝叶斯错误地分类为“圣诞节”,在训练集的下一个迭代中用于训练朴素贝叶斯分类器。有了这个不断累积的错误,我们可能会担心,随着迭代次数的增加,结果实际上会更糟。

最后,我们大约有一半的歌曲被归类为“圣诞节”,而另一半为“不是圣诞节”,这似乎是非常不可信的。这倒是引出了一个问题:是否存在一个最佳的迭代次数?我们不能简单地手动控制这57650首歌是否被正确分类。所以这仍然是一个有待回答的开放式问题!

还有哪些有趣的结论

之后,我们用这些数据,还分析出了以下这些有趣的结论,基于篇幅的原因,我们直接贴出kaggle上的一些有趣结论,不再在微信推文中po出实现代码,想亲手尝试的同学,请拉到文末查看kaggle上的代码和数据传送门~

与圣诞关系最密切的歌词TOP20

歌词正负情感词云图

圣诞歌产量最高的歌手TOP20

积极(positive)歌词占比最多的歌手TOP20

圣诞歌词中,什么样的双音节词最受欢迎?

上边的结论有没有让你脑洞大开,你有什么其他的好想法吗?欢迎在文末分享给我们!或许我们可以一起做点好玩的东西~

最后,祝大家圣诞快乐,平安喜乐~

55000首歌曲传送门: https://www.kaggle.com/mousehead/songlyrics 原文链接: https://blog.eoda.de/2017/12/19/data-wonderland-christmas-songs-from-the-viewpoint-of-a-data-scientist/

本文分享自微信公众号 - 大数据文摘(BigDataDigest)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-12-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

时尚网站吉尔特(GILT)中的深度学习

15030
来自专栏携程技术中心

干货 | 携程个性化推荐算法实践

作者简介 携程基础业务研发部-数据产品和服务组,专注于个性化推荐、自然语言处理、图像识别等人工智能领域的先进技术在旅游行业的应用研究并落地产生价值。目前,团队已...

93650
来自专栏企鹅号快讯

基于神经网络动力学模型的强化学习

选文|丁建峰翻译| 张一 许峰 金明 校对| 李韩超 编辑| 李韩超 素材来源:robohub & BAIR 泡泡机器人推广内容组编译作品 01 让机器人...

37270
来自专栏ATYUN订阅号

【深度学习】伯克利人工智能新研究:通过最大熵强化学习来学习各种技能

深度强化学习(Deep reinforcement learning)在许多任务中都能获得成功。标准深度强化学习算法的目标是掌握一种解决给定任务的单一方法。因此...

35560
来自专栏大数据文摘

AI说人“画” | 什么?咱俩说的是一个“模型”嘛!

17630
来自专栏AI研习社

从事人脸识别研究必读的N篇文章

该文内容较老,但对入门者还是有很强的学习意义,可以了解人脸识别的历程与技术发展。 人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置...

36440
来自专栏机器之心

资源 | 从图像处理到语音识别,25款数据科学家必知的深度学习开放数据集

选自Analytics Vidhya 作者:Pranav Dar 机器之心编译 参与:陈韵竹、路 本文介绍了 25 个深度学习开放数据集,包括图像处理、自然语言...

35540
来自专栏CreateAMind

使用模仿学习攻克Atari最难游戏!DeepMind新论文解读

19930
来自专栏量子位

举个卡戴珊的例子,讲讲Hinton的Capsule是怎么回事 | 教程+代码

Nick Bourdakos 文 李林 若朴 编译自 HackerNoon 量子位 出品 | 公众号 QbitAI ? Capsule Networks,或者说...

30750
来自专栏CDA数据分析师

MIT公开课-机器学习导论(附视频中字)

MIT6.0002课程《计算机科学与用Python编程》(Computer Science and Programming in Python)针对没有或有少量...

290100

扫码关注云+社区

领取腾讯云代金券