pytorch中读取模型权重数据、保存数据方法总结

pytorch中保存数据策略在长时间的深度训练中有很大的作用,我们可以通过保存训练好的权重,然后等到下次使用的时候再取出来。另外我们也可以通过迁移学习使用别人训练好的数据进行训练。达到事半功百的效果。

pytorch保存数据

pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式。而pth文件是python中存储文件的常用格式。而在keras中则是使用.h5文件。

# 保存模型示例代码
print('===> Saving models...')
state = {
    'state': model.state_dict(),
    'epoch': epoch                   # 将epoch一并保存
}
if not os.path.isdir('checkpoint'):
    os.mkdir('checkpoint')
torch.save(state, './checkpoint/autoencoder.t7')

保存用到torch.save函数,注意该函数第一个参数可以是单个值也可以是字典,字典可以存更多你要保存的参数(不仅仅是权重数据)。

pytorch读取数据

pytorch读取数据使用的方法和我们平时使用预训练参数所用的方法是一样的,都是使用load_state_dict这个函数。

下方的代码和上方的保存代码可以搭配使用。

print('===> Try resume from checkpoint')
if os.path.isdir('checkpoint'):
    try:
        checkpoint = torch.load('./checkpoint/autoencoder.t7')
        model.load_state_dict(checkpoint['state'])        # 从字典中依次读取
        start_epoch = checkpoint['epoch']
        print('===> Load last checkpoint data')
    except FileNotFoundError:
        print('Can\'t found autoencoder.t7')
else:
    start_epoch = 0
    print('===> Start from scratch')

以上是pytorch读取的方法汇总,但是要注意,在使用官方的预处理模型进行读取时,一般使用的格式是pth,使用官方的模型读取命令会检查你模型的格式是否正确,如果不是使用官方提供模型通过下面的函数强行读取模型(将其他模型例如caffe模型转过来的模型放到指定目录下)会发生错误。

def vgg19(pretrained=False, **kwargs):
    """VGG 19-layer model (configuration "E")

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = VGG(make_layers(cfg['E']), **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
    return model

假如我们有从caffe模型转过来的pytorch模型([0-255,BGR]),我们可以使用:

model_dir = '自己的模型地址'
model = VGG()
model.load_state_dict(torch.load(model_dir + 'vgg_conv.pth'))

也就是pytorch的读取函数进行读取即可。

此文由腾讯云爬虫爬取,文章来源于Oldpan博客

欢迎关注Oldpan博客公众号,持续酝酿深度学习质量文:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

中文分词实践(基于R语言)

背景:分析用户在世界杯期间讨论最多的话题。 思路:把用户关于世界杯的帖子拉下来,然后做中文分词+词频统计,最后将统计结果简单做个标签云. 后续:中文分词是中文...

3386
来自专栏码云1024

Tensorflow 搭建神经网络 (一)

本文为中国大学MOOC课程《人工智能实践:Tensorflow笔记》的笔记中搭建神经网络,总结搭建八股的部分

56715
来自专栏CNN

Tensorflow将模型导出为一个文件及接口设置

在上一篇文章中《Tensorflow加载预训练模型和保存模型》,我们学习到如何使用预训练的模型。但注意到,在上一篇文章中使用预训练模型,必须至少的要4个文件:

982
来自专栏fangyangcoder

tensorflow笔记(一)之基础知识

http://www.cnblogs.com/fydeblog/p/7399701.html

712
来自专栏人工智能LeadAI

Tensorboard入门 | TensorFlow深度学习笔记

Tensorboard是TensorFlow自带的一个强大的可视化工具 01 功 能 这是TensorFlow在MNIST实验数据上得到Tensorboard...

3595
来自专栏梦里茶室

TensorFlow深度学习笔记 Tensorboard入门

Github工程地址:https://github.com/ahangchen/GDLnotes 官方教程:https://www.tensorflow.org...

1858
来自专栏生信技能树

转录组数据拼接之应用篇

前前后后接触了一些基因组和转录组拼接的工作,而且后期还会持续进行。期间遇到了各种各样莫名其妙的坑,也尝试了一些不同的方法和软件,简单做一个阶段性小结。上周的今天...

4086
来自专栏梦里茶室

TensorFlow 深度学习笔记 逻辑回归 实践篇

Practical Aspects of Learning Install Ipython NoteBook 可以参考这个教程 可以直接安装anaconda,里...

1837
来自专栏人工智能LeadAI

逻辑回归 | TensorFlow深度学习笔记

课程目标:学习简单的数据展示,训练一个Logistics Classifier,熟悉以后要使用的数据 Install Ipython NoteBook 可以参考...

2867
来自专栏简书专栏

基于tensorflow、CNN、清华数据集THUCNews的新浪新闻文本分类

tensorflow是谷歌google的深度学习框架,tensor中文叫做张量,flow叫做流。 CNN是convolutional neural netwo...

1121

扫码关注云+社区