全球最全计算机视觉资料(1:入门学习|课程|综述|图书|期刊会议)

目标检测和深度学习

入门学习

  1. 计算机视觉:让冰冷的机器看懂这个多彩的世界 by 孙剑
    • [http://www.msra.cn/zh-cn/news/features/computer-vision-20150210]
  2. UCLA朱松纯: 正本清源·初探计算机视觉的三个源头、兼谈人工智能
    • [https://mp.weixin.qq.com/s/2ytV5Bt50yhYOFYXYQe6ZQ]
  3. 深度学习与视觉计算 by 王亮 中科院自动化所
    • [http://www.caai.cn/index.php?s=/Home/Article/qikandetail/year/2017/month/04.html]
  4. 如何做好计算机视觉的研究? by 微软 华刚博士
    • [http://www.msra.cn/zh-cn/news/features/do-research-in-computer-vision-20161205]
  5. 计算机视觉 微软亚洲研究院系列文章
    • 通俗介绍计算机视觉在生活中的各种应用。
    • [http://www.msra.cn/zh-cn/research/computer-vision]
  6. 计算机视觉随谈
    • [http://blog.csdn.net/zouxy09/article/details/38639349]
  7. 计算机视觉:就在你我身边 微软
    • [https://mp.weixin.qq.com/s/rgvQeW9CwswbmcAI4BISNQ]
  8. 什么是计算机视觉?什么是机器视觉?
    • [https://mp.weixin.qq.com/s/PVom2BwEUXw3z68cra9xNQ]
  9. 卷积神经网络如何进行图像识别
    • [http://www.infoq.com/cn/articles/convolutional-neural-networks-image-recognition]
  10. 相似图片搜索的原理 阮一峰
    • [http://www.ruanyifeng.com/blog/2011/07/principle_of_similar_image_search.html\]
  11. 如何识别图像边缘? 阮一峰
    • [http://www.ruanyifeng.com/blog/2016/07/edge-recognition.html]
  12. 图像目标检测(Object Detection)原理与实现 (1-6)
    • [http://www.voidcn.com/article/p-xnjyqlkj-ua.html]
  13. 运动目标跟踪系列(1-17)
    • [http://blog.csdn.net/App_12062011/article/category/6269524/1]
  14. 看图说话的AI小朋友——图像标注趣谈(上,下)
    • [https://zhuanlan.zhihu.com/p/22408033]
    • [https://zhuanlan.zhihu.com/p/22520434]
  15. Video Analysis 相关领域介绍之Video Captioning(视频to文字描述)
    • [https://zhuanlan.zhihu.com/p/26730181]
  16. 从特斯拉到计算机视觉之「图像语义分割」
    • [https://zhuanlan.zhihu.com/p/21824299]
  17. 计算机视觉识别简史:从 AlexNet、ResNet 到 Mask RCNN
    • [https://github.com/Nikasa1889/HistoryObjectRecognition]
    • [https://mp.weixin.qq.com/s/ZKMi4gRfDRcTxzKlTQb-Mw]
    • [https://github.com/Nikasa1889/HistoryObjectRecognition/blob/master/HistoryOfObjectRecognition%20-%20A0.pdf]
  18. 深度学习在计算机视觉领域的前沿进展
    • [https://zhuanlan.zhihu.com/p/24699780]
  19. 深度学习时代的计算机视觉
    • [https://mp.weixin.qq.com/s/gExfzCxjHrSb7afn33f-lA]
  20. 视觉求索 公众号相关文章系列,
    • 浅谈人工智能:现状、任务、构架与统一 | 正本清源 [http://mp.weixin.qq.com/s/-wSYLu-XvOrsST8_KEUa-Q]
    • 人生若只如初见 | 学术人生 [https://mp.weixin.qq.com/s/kFA7bI_FFjZQkBNDvcn01g]
    • 初探计算机视觉的三个源头、兼谈人工智能|正本清源 [https://mp.weixin.qq.com/s/2ytV5Bt50yhYOFYXYQe6ZQ]
  21. 深度学习大讲堂 公众号相关文章系列
    • 深度学习在目标跟踪中的应用 [https://zhuanlan.zhihu.com/p/22334661]
    • 深度学习在图像取证中的进展与趋势 [https://zhuanlan.zhihu.com/p/23341157]
    • 行人检测、跟踪与检索领域年度进展报告 [https://zhuanlan.zhihu.com/p/26807041]
    • 基于深度学习的目标检测研究进展 [https://zhuanlan.zhihu.com/p/21412911]
    • 基于深度学习的视觉实例搜索研究进展 [https://zhuanlan.zhihu.com/p/22265265]
    • 基于深度学习的VQA(视觉问答)技术 [https://zhuanlan.zhihu.com/p/22530291]
    • 人脸识别简史与近期进展 [https://zhuanlan.zhihu.com/p/21465605]
    • 边缘检测领域年度进展报告 [https://zhuanlan.zhihu.com/p/26848831]
    • 目标跟踪领域进展报告 [https://zhuanlan.zhihu.com/p/27293523]

课程

  1. 斯坦福视觉实验室主页:http://vision.stanford.edu/ 李飞飞组CS131, CS231A, CS231n 三个课程,可是说是最好的计算机视觉课程。
  2. CS 131 Computer Vision: Foundations and Applications: 基础知识:主要讲传统的边缘检测,特征点描述,相机标定,全景图拼接等知识 [http://vision.stanford.edu/teaching/cs131_fall1415/schedule.html]
  3. CS231A Computer Vision: from 3D reconstruction to recognition: [http://cvgl.stanford.edu/teaching/cs231a_winter1415/schedule.html]
  4. CS231n 2017: Convolutional Neural Networks for Visual Recognition 主要讲卷积神经网络的具体结构,各组成部分的原理优化以及各种应用。 [http://vision.stanford.edu/teaching/cs231n/] 国内地址:[http://www.bilibili.com/video/av13260183/]
  5. Stanford CS231n 2016 : Convolutional Neural Networks for Visual Recognition
    • homepage: [http://cs231n.stanford.edu/]
    • homepage: [http://vision.stanford.edu/teaching/cs231n/index.html]
    • syllabus: [http://vision.stanford.edu/teaching/cs231n/syllabus.html]
    • course notes: [http://cs231n.github.io/]
    • youtube: [https://www.youtube.com/watch?v=NfnWJUyUJYU&feature=youtu.be]
    • mirror: [http://pan.baidu.com/s/1pKsTivp]
    • mirror: [http://pan.baidu.com/s/1c2wR8dy]
    • 网易中文字幕:[http://study.163.com/course/introduction/1003223001.htm]
    • assignment 1: [http://cs231n.github.io/assignments2016/assignment1/]
    • assignment 2: [http://cs231n.github.io/assignments2016/assignment2/]
    • assignment 3: [http://cs231n.github.io/assignments2016/assignment3/]
  6. 1st Summer School on Deep Learning for Computer Vision Barcelona: (July 4-8, 2016)
    • youtube: [https://www.youtube.com/user/imatgeupc/videos?shelf_id=0&sort=dd&view=0]
    • 深度学习计算机视觉夏季学校课程, 包含基础知识以及许多深度学习在计算机视觉中的应用,比如分类,检测,captioning等等
    • homepage(slides+videos): [http://imatge-upc.github.io/telecombcn-2016-dlcv/]
    • homepage: [https://imatge.upc.edu/web/teaching/deep-learning-computer-vision]
  7. 2nd Summer School on Deep Learning for Computer VisionBarcelona (June 21-27, 2017) [https://telecombcn-dl.github.io/2017-dlcv/]

综述

  1. Annotated Computer Vision Bibliography: Table of Contents. Since 1994 Keith Price从1994年开始做了这个索引,涵盖了所有计算机视觉里面所有topic,所有subtopic的著作,包括论文,教材,还对各类主题的关键词。这个网站频繁更新(最近一次是2017年8月28号),收录每个方向重要期刊,会议文献和书籍,并且保证了所有链接不失效。
  2. What Sparked Video Research in 1877? The Overlooked Role of the Siemens Artificial Eye by Mark Schubin 2017 [http://ieeexplore.ieee.org/document/7857854/]
  3. Giving machines humanlike eyes. by Posch, C., Benosman, R., Etienne-Cummings, R. 2015 [http://ieeexplore.ieee.org/document/7335800/]
  4. Seeing is not enough by Tom GellerOberlin, OH [https://dl.acm.org/citation.cfm?id=2001276]
  5. Visual Tracking: An Experimental Survey [https://dl.acm.org/citation.cfm?id=2693387]
  6. A survey on object recognition and segmentation techniques [http://ieeexplore.ieee.org/document/7724975/]
  7. A Review of Image Recognition with Deep Convolutional Neural Network [https://link.springer.com/chapter/10.1007/978-3-319-63309-1_7\]
  8. Recent Advance in Content-based Image Retrieval: A Literature Survey. Wengang Zhou, Houqiang Li, and Qi Tian 2017 [https://arxiv.org/pdf/1706.06064.pdf]
  9. Automatic Description Generation from Images: A Survey of Models, Datasets, and Evaluation Measures 2016 [https://www.jair.org/media/4900/live-4900-9139-jair.pdf]

Turorial

  1. Intro to Deep Learning for Computer Vision 2016 [http://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/]
  2. CVPR 2014 Tutorial on Deep Learning in Computer Vision [https://sites.google.com/site/deeplearningcvpr2014/]
  3. CVPR 2015 Applied Deep Learning for Computer Vision with Torch [https://github.com/soumith/cvpr2015]
  4. Deep Learning for Computer Vision – Introduction to Convolution Neural Networks [http://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-introduction-convolution-neural-networks/]
  5. A Beginner's Guide To Understanding Convolutional Neural Networks [https://adeshpande3.github.io/adeshpande3.github.io/A-Beginners-Guide-To-Understanding-Convolutional-Neural-Networks/']
  6. CVPR'17 Tutorial Deep Learning for Objects and Scenes by Kaiming He Ross Girshick [http://deeplearning.csail.mit.edu/]
  7. CVPR tutorial : Large-Scale Visual Recognition [http://www.europe.naverlabs.com/Research/Computer-Vision/Highlights/CVPR-tutorial-Large-Scale-Visual-Recognition]
  8. CVPR’16 Tutorial on Image Tag Assignment, Refinement and Retrieval [http://www.lambertoballan.net/2016/06/cvpr16-tutorial-image-tag-assignment-refinement-and-retrieval/]
  9. Tutorial on Answering Questions about Images with Deep Learning The tutorial was presented at '2nd Summer School on Integrating Vision and Language: Deep Learning' in Malta, 2016 [https://arxiv.org/abs/1610.01076]
  10. “Semantic Segmentation for Scene Understanding: Algorithms and Implementations" tutorial [ https://www.youtube.com/watch?v=pQ318oCGJGY]
  11. A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach [http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf] [http://deeplearning.cs.cmu.edu/notes/shaoweiwang.pdf]
  12. Towards Good Practices for Recognition & Detection by Hikvision Research Institute. Supervised Data Augmentation (SDA) [http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf]
  13. Generative Adversarial Networks by Ian Goodfellow, NIPS 2016 tutorial [ https://arxiv.org/abs/1701.00160] [http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf]
  14. Deep Learning for Computer Vision – Introduction to Convolution Neural Networks [http://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-introduction-convolution-neural-networks/]

图书

  1. 两本经典教材《Computer Vision: A Modern Approach》和《Computer Vision: Algorithms and Applications》,可以先读完第一本再读第二本。
  2. Computer Vision: A Modern Approach by David A. Forsyth, Jean Ponce 英文:[http://cmuems.com/excap/readings/forsyth-ponce-computer-vision-a-modern-approach.pdf] 中文:[https://pan.baidu.com/s/1min99eK]
  3. Computer Vision: Algorithms and Applications by Richard Szeliski 英文:[http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf\] 中文:[https://pan.baidu.com/s/1mhYGtio]
  4. Computer Vision: Models, Learning, and Inference by Simon J.D. Prince 书的主页上还有配套的Slider, 代码,tutorial,演示等各种资源。 [http://www.computervisionmodels.com/]

相关期刊与会议

国际会议

  1. CVPR, Computer Vision and Pattern Recognition CVPR 2017:[http://cvpr2017.thecvf.com/]
  2. ICCV, International Conference on Computer Vision ICCV2017:[http://iccv2017.thecvf.com/]
  3. ECCV, European Conference on Computer Vision
  4. SIGGRAPH, Special Interest Group on Computer Graphics and Interactive techniques SIGGRAPH2017:[http://s2017.siggraph.org/]
  5. ACM International Conference on Multimedia ACMMM2017:[http://www.acmmm.org/2017/]
  6. ICIP, International Conference on Image Processing [http://2017.ieeeicip.org/]

期刊

  1. ACM Transactions on Graphics, TOG
  2. International Journal of Computer Vision, IJCV
  3. IEEE Trans on Pattern Analysis and Machine Intelligence, TPAMI
  4. IEEE Transactions on Image Processing, TIP
  5. IEEE Transactions on Visualization and Computer Graphics, TVCG
  6. IEEE Communications Surveys and Tutorials
  7. IEEE Signal Processing Magazine
  8. IEEE Transactions on EVOLUTIONARY COMPUTATION
  9. IEEE Transactions on GEOSCIENCE and REMOTE SENSING 2区
  10. IEEE Transactions on Pattern Analysis and Machine Intelligence
  11. NEUROCOMPUTING 2区
  12. Pattern Recognition Letters 2区
  13. Proceedings of the IEEE
  14. Signal image and Video Processing 4区
  15. IEEE journal on Selected areas in Communications 2区
  16. IEEE Transactions on image Processing 2区
  17. journal of Visual Communication and image Representation 3区
  18. Machine Vision and Application 3区
  19. Pattern Recognition 2区
  20. Signal Processing-image Communication 3区
  21. COMPUTER Vision and image UNDERSTANDING 3区
  22. IEEE Communications Surveys and Tutorials
  23. IET image Processing 4区
  24. Artificial Intelligence 2区
  25. Machine Learning 3区
  26. Medical image Analysis 2区

转发帮助更多的人~

原文发布于微信公众号 - 目标检测和深度学习(The_leader_of_DL_CV)

原文发表时间:2018-05-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

洞见 | 生成对抗网络GAN最近在NLP领域有哪些应用?

AI科技评论按:本文作者莫驚蟄,原文载于知乎,获授权转载。 我来答一答自然语言处理方面GAN的应用 直接把GAN应用到NLP领域(主要是生成序列),有两方面的问...

4904
来自专栏数说工作室

《神经网络》中文字幕版 | (3. 线性/逻辑神经网络和反向传播)

《Neutral Network for Machine Learning》(机器学习中的神经网络)系列课程,是深度学习大神 Geoffrey Hinton 毕...

3637
来自专栏人工智能

以撩妹为例,5分钟让你秒懂深度学习!

深度学习是一个不断磨合的过程 就像谈恋爱一样 如果在这个人工智能的时代,作为一个有理想抱负的程序员,或者学生、爱好者,不懂深度学习这个超热的话题,似乎已经跟时代...

2237
来自专栏AI2ML人工智能to机器学习

Hinton和Jordan理解的EM算法

在“Hinton是如何理解PCA?”里面,我们体会到Hinton高人一等的见解。 Hinton, 这个深度学习的缔造者( 参考 攒说 Geoff Hinton ...

1433
来自专栏智能算法

(入门)|深度学习通俗理解

1. 深度学习到底是干啥的? 2017年10月18日,《自然》杂志网站公布的论文显示,此前战胜人类围棋世界冠军的电脑程序AlphaGo的开发团队又出力作——新程...

4099
来自专栏新智元

【LeCun & Bengio】NIPS 2015 深度学习专题论坛实录(35PPT)

Yann LeCun:纽约大学终身教授,Facebook人工智能实验室负责人。 Yoshua Bengio:加拿大蒙特利尔大学教授,深度学习大神。 “Deep ...

3826
来自专栏用户2442861的专栏

python朴素贝叶斯实现-2

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/d...

1362
来自专栏CreateAMind

理论|来聊聊最近很火的WGAN

本周推送的话题是WGAN——WassersteinGAN[2],这篇文章于2017年1月26日出现在arXiv上,并迅速得到了大家的热议,在reddit上有专门...

1252
来自专栏AI科技大本营的专栏

牛!何恺明包揽2项ICCV 2017最佳论文奖!这位高考状元告诉你什么是开挂的人生

大神终究是大神! 刚刚,AI 科技大本营获悉,继两次荣获 CVPR 最佳论文奖之后,何恺明参与的两篇最新论文又分别摘下 ICCV 2017 的最佳论文奖(Bes...

3755
来自专栏AI研习社

「Deep Learning」读书系列分享第二章:线性代数 | 分享总结

「Deep Learning」这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN 的提出者、谷歌大脑研究科学家 Ian Goodfellow,...

4575

扫码关注云+社区

领取腾讯云代金券