ICML 2018 | 英伟达提出仅使用噪点图像训练的图像增强方法,可去除照片噪点

选自Nvidia

机器之心编译

参与:机器之心编辑部

如果有一天,在低亮度环境中拍摄的照片中的噪声可以被自动清除,并且自动修复失真,那将会如何?你的照片库里是否有很多带噪点的粗糙照片,很想修复它们?今天要介绍的这个基于深度学习的方法,仅通过观察原始的低质量图像就可以修复照片。这项研究由来自英伟达、阿尔托大学和 MIT 的研究者开展,将在本周的瑞典斯德哥尔摩 ICML 2018 上展示。

近期在深度学习领域的研究聚焦于通过展示带噪点和清晰的图像示例对来训练神经网络修复图像。然后 AI 系统学习如何弥补差异。新方法的不同之处在于,它仅需要两张都带噪点的输入图像来训练。

在没有展示无噪点图像的情况下,这个 AI 系统也可以移除照片上的失真、噪点、颗粒,并自动增强照片。

研究人员在其论文中表示:「在没有观察到清晰信号的情况下,学习恢复信号并非不可能,并且有时还会超过使用清晰样本训练的性能。[神经网络] 与利用清晰样本的最先进方法相当——使用完全相同的训练方法,并且在训练时间或表现上通常没有明显的缺点。」

该团队使用 NVIDIA Tesla P100 GPU 和 cuDNN 加速的 TensorFlow 深度学习框架在 ImageNet 验证集上对其系统进行了 50000 张图像的训练。

视频内容

为了测试系统,他们在三个不同的数据集上验证了神经网络。

该方法甚至可以应用在核磁共振图像(MRI)的增强上,可能为医学成像的大幅改进开辟一条康庄大道。

「在现实世界中想要获得清晰的训练数据是很困难的:微光摄影(如天文图像)、基于物理的渲染图像、核磁共振图像」,研究团队说「我们的概念验证式的演示通过消除对于收集清晰数据的需求,来为这些应用找到潜在的益处。当然,天下没有免费的午餐——我们无法学习获取输入数据中不存在的特性——但这同样适用于清晰目标的训练。」

该研究团队将会在 ICML 会议上通过口头演讲和海报的形式展示他们的工作内容。你可以在 7 月 12 日星期四的监督学习口头会议 (2:20 pm) 和 6:15 pm 海报展上与该团队见面。

论文:Noise2Noise: Learning Image Restoration without Clean Data

论文地址:https://arxiv.org/pdf/1803.04189.pdf

我们将基本统计推理应用于机器学习的信号重构——学习将损坏的观察结果映射到干净的信号上——由此得到一个简单而有力的结论:在某些常见的情况下,可以在不观察清晰信号的前提下学会恢复信号,达到接近或等于使用清晰样本进行训练的性能。我们展示了该技术在图像噪声去除、合成蒙特卡罗图像降噪以及从欠采样输入重建核磁共振扫描中的应用,所有这些都是基于仅观察损坏的数据。

原文地址:https://news.developer.nvidia.com/ai-can-now-fix-your-grainy-photos-by-only-looking-at-grainy-photos/

本文为机器之心编译,转载请联系本公众号获得授权。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2018-07-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

不正之风!机器学习论文里都有哪四大投机取巧的写作手法?

AI 科技评论按:由于深度神经网络的成功,机器学习的整个领域也愈发热门、愈发茁壮。机器学习的繁荣以及 arXiv 助推下的知识和技巧快速更新当然是好事,不过这也...

27950
来自专栏达观数据

多模型融合推荐算法在达观数据的运用

多模型融合推荐算法在达观数据的运用 研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。电商平台里的商品、媒体网站里的新闻、小...

53560
来自专栏AI科技评论

如何玩转谷歌TensorFlow? | 牛人讲堂

AI并不是一门简单的学科,AI算法的开发和调试并没有一个统一的、集成了大量API方便调用的平台和语言,目前的人工智能开发平台仍然处于一种半蛮荒的状态。许多功能需...

35560
来自专栏PPV课数据科学社区

【译文】统计建模的24种应用(上)

在这里,我们讨论统计模型的一般应用情况。不管他们是否源自数据科学,运筹学,工程学,机器学习或统计学,如决策树,logistic回归,贝叶斯模型,马尔可夫模型,数...

34240
来自专栏机器之心

学界 | 深度神经网络比拼人类视觉:信号弱时的物体识别差异

选自arXiv 机器之心编译 参与:Smith 近日,来自德国 Tubingen大学和Potsdam大学的研究人员们共同发布了一项研究成果——深度神经网络和人类...

29450
来自专栏工科狗和生物喵

【毕设进行时-工业大数据,数据挖掘】第一天收获

【个人看法】 支持向量机的核心与决策树类似。但是还是有不同之处,现在多学习下支持向量机,后面用自己的算法也行。或者给出多个版本的话,可以作为几个方案去解释!

14520
来自专栏新智元

Science重磅!用光速实现深度学习,跟GPU说再见

深度学习对算力的需求没有止境,但受制于能耗和物理极限,基于硅基的电子元件虽然现在还能支撑,但远处那堵几乎不可逾越的高墙已然显现。

25030
来自专栏灯塔大数据

每周学点大数据 | No.58协同过滤模型(上)

NO.58 协同过滤模型(上) Mr. 王:为了能够有效地利用其他用户的评价来进行更有效的推荐,人们提出了协同过滤的推荐模型。 小可:那什么是协同过滤模型呢?它...

32490
来自专栏CDA数据分析师

干货 | 机器学习没有你想的那么复杂

人脑是最神奇的。你知道我更感兴趣的是什么吗?是我们的学习能力。我们如何能够适应并学习全新的技能,然后应用到日常生活之中呢?

8640
来自专栏深度学习那些事儿

一篇文章解决机器学习,深度学习入门疑惑

研究生有不少日子,和之前的几个学长以及几个学弟偶尔也聊聊天。大部分聊的话题无关乎这几年大火的机器学习深度学习神经网络,而这篇文章的目的,则是从学生的角度(不管是...

69770

扫码关注云+社区

领取腾讯云代金券