前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >线性模型可解释一定比DNN高?UCSD科学家:大错特错!

线性模型可解释一定比DNN高?UCSD科学家:大错特错!

作者头像
新智元
发布2018-08-01 11:01:04
4930
发布2018-08-01 11:01:04
举报
文章被收录于专栏:新智元新智元

新智元编译

来源:akshayagrawal.com、queue.acm.org

作者:Zachary C. Lipton、 Akshey Agrawal

编译:大明

【新智元导读】人们对深度学习模型的真正运行机制还远远没有完全了解,如何提高预测模型的“可解释性”成了一个日益重要的话题。近来的一篇论文讨论了机器学习模型的“可解释性”的概念及其重要意义。

7月17日,加州大学圣迭戈分校(UCSD)博士、卡内基梅隆大学(CMU)计算机科学助理教授Zachary C. Lipton在ACM Queue上发表了题为《The Mythos of Model Interpretability》的文章,讨论了监督式机器学习预测模型的可解释性问题。Lipton在文中试图明确“可解释性”的定义,并对“可解释性”进行分类,并提出了一个重要观点,认为线性模型的可解释性并不一定高于深度神经网络(DNN)模型

以下是新智元对论文内容的简编。

监督式的机器学习模型具有卓越的预测能力。不过,机器学习模型不仅应该可用,而且应该是可解释的,但“解释机器学习模型”的任务定义似乎不够明确。学术文献中提出了为模型寻求可解释性的许多动机,并提供了无数的技术来提供可解释的模型。尽管存在这种模棱两可的情况,但许多作者宣称他们的模型在公理上是可解释的,然而对此却缺乏进一步的论证。问题是,目前尚不清楚这些技术的共同特性是什么。

本文旨在完善关于可解释性的表述。首先,文章回顾了以前论文中解决可解释性的目标,发现这些目标多种多样,偶尔还有相互矛盾。接着讨论了研究可解释性的模型属性和技术思路,以及模型对人而言的识别透明度,并引入了“事后可解释性”的概念作为对比。文章讨论了关于模型可解释性概念的不同观点的可行性和合理之处,对“线性模型可解释,深度神经网络不可解释”这一常见的观点提出了质疑。

在过去的20年中,机器学习的快速发展产生了自动决策。在实际应用中,大多数基于机器学习的决策的运作方式是这样的:用输入数据训练机器学习算法,然后由算法预测相应的输出。例如,给定一组关于金融交易的属性信息,机器学习算法可以预测长期的投资回报。给定来自CT扫描的图像,算法可以该图像的扫描对象罹患癌性肿瘤的概率。

机器学习算法接收大量成对数据(输入和输出),然后输出一个模型,能够预测之前未见过的输入。研究人员将这个模式称为“监督式学习”。然后,为了让决策过程完全自动化,可以将模型的输出提供给某个决策规则。例如,垃圾邮件过滤器可以通过程序舍弃被预测为垃圾邮件(置信度超过某阈值)的电邮。

什么是可解释性,它为什么如此重要?

目前机器学习在医学、刑事司法系统和金融市场等关键领域的应用越来越广泛,但人类无法真正理解这些模型,这是个问题。一些人提出了模型的“可解释性”作为一种补救措施,但在学术文献中,很少有作者准确地阐明了“可解释性”的含义,也没有准确解释他们提出的解决方案为何是有用的。

尽管缺乏定义,但越来越多的文献提出了据称可解释的算法。这样来看我们似乎可以得出以下结论:要么是(1)人们对可解释性的定义是普遍认同的,但没人愿意费心以书面表达出来,要么就是(2)对“可解释性”的定义是不明确的,所以关于机器学习模型的可解释性的观点都显得科学性不足。对相关文献的研究表明,后者与实际情况相符合。关于模型可解释性的文献中提出的目标和方法多种多样,这表明可解释性不是一个单一概念,而是一些彼此迥然不同的观点,有必要将这些观点分开来讨论。

本文侧重讨论监督式学习,而非强化学习和互动学习等其他机器学习范式。这是因为当前在实际应用中,监督式学习居于首要地位。同时给出了对“线性模型可解释,而深层神经网络不可解释”这个常见观点的分析。首先需要明确的是,什么是可解释性?可解释性为什么如此重要?

许多人提出,可解释性就是对模型产生信任的方式。这又导致了另一个关于认识论的问题:什么是信任?是指对模型能够表现良好的信心吗?还是说“可解释性”只是意味着对模型的低层级机制的理解?信任是否是一种主观的定义?

还有人认为,可解释的模型就是可取的,因为它可能有助于揭示观察数据中的因果结构。而关于解释权的法律概念为可解释性一词提供了另一个视角。有时,寻求可解释性的目的,可能只是为了从模型中获取更多有用的信息。

本文讨论了模型的哪些属性可以让它们变得可解释。有些论文将可解释性与可理解性或可理解性等同起来,在这些论文中,可理解的模型有时被称为“透明”的,而难以理解的模型被称为黑盒子。但是透明度是什么?算法本身会收敛吗?有唯一解吗?人们是否了解每个参数代表什么?或者考虑模型的复杂性:是否足够简单?

其他内容包括“事后可解释”的概念。这种解释可能解释了预测结果,但没有阐明预测模型运作的机制。比如由人类生成的口头解释,或者用于分析深度神经网络的显著性图。因此,人类做出的决定可能会满足“事后可解释”,不过人类大脑的运作机制仍是个黑盒子,这表明两种常见的可解释性概念之间的矛盾。

本论文的作者Zachary C. Lipton

线性模型和深度网络模型的取舍

可解释性的概念很重要、也很棘手。本文分析了可解释性的动机和研究界提出的一些尝试。现在让我们考虑一下这种分析的含义并提供一些内容。

线性模型并不比深度神经网络具有更高的可解释性。尽管这种说法很流行,但其真实价值取决于采用哪种可解释性的概念。如果可解释性指的是算法透明度,那么这种说法似乎没有什么争议,但对高维特征或经大幅修正的特征而言,线性模型就分别不具备可模拟性和可分解性。

在线性模型和深度模型之间进行选择时,我们时常要在算法透明度和可分解性之间进行权衡。这是因为深度神经网络模型一般面向原始特征或轻度处理的特征。所以如果不出意外,这些特征都具有直观的意义,因而采用“事后可解释性”的概念是可以接受的。而线性模型则不同,为了获得足够的性能,通常必须面向大量经人工设计的特征。Zachary Lipton曾与他人合作撰文指出,线性模型要想接近递归神经网络(RNN)的性能,就必须以舍弃可分解性为代价。

如果考察某些类型的“事后可解释性”(post-hoc interpretable),深度神经网络具有明显的优势。深度神经网络能够学习丰富的表示,这些表示能够可视化、用语言表达或用于聚类。如果考虑对可解释性的需求,似乎线性模型在研究自然世界上的表现更好,但这似乎没有理论上的原因。

关于可解释性的声明必须是合格的。可解释性一词并没有一个整体概念。关于可解释性的任何观点都应该首先为“可解释性”确定一个特定的定义。如果模型满足透明度的形式,则可解释性可以直接体现出来。对于“事后可解释性”,则应确定一个明确的目标,并证明所提供的解释形式能够实现这一目标。

事后解释可能会有误导性。不能一味接受“事后可解释”的概念,特别是在基于主观目标对模型做特定优化时。因为在这种情况下,人们可能会在有意无意间优化算法,以提供误导性、但貌似合理的解释。就像在招聘活动和大学录取中的一些行为一样。我们在努力推广机器学习模型的应用,模仿人类智能的过程中,更应该小心不要重现大规模的不正常行为。

未来方向

未来有几个有前途的方向。首先,对于某些问题,可以开发更丰富的损失函数和性能指标,降低现实与机器学习目标之间的差异。包括对稀疏诱导正则化因子(sparsity-inducing regularizers)和成本敏感学习(cost-sensitive learning)的研究。其次,这种分析可以扩展到其他机器学习范式中,比如强化学习。强化学习模型可通过直接对模型与环境的交互进行建模,从而解决模型可解释性研究中的一些问题。

值得注意的是,强化学习模型能够学习自身行为与现实世界的影响之间的因果关系。然而,与监督式学习一样,强化学习同样依赖于明确定义的标量目标。对于公平性(fairness)问题,这个我们正在努力精确定义的指标,机器学习范式可解释度的提升则不大可能解决。

观点争鸣

不过,关于这个问题也有人提出了一些异议,谷歌大脑软件工程师、斯坦福大学计算机科学硕士Akshay Agrawal就对Lipton论文中的主要观点进行了归纳,并提出了不少不同意见。

对此文提出不同意见的Akshay Agrawal

Agrawal认为Lipton的论文对模型可解释性的定义分为三个方面:

第一是透明度,其表现形式是“可模拟性”,即人类应该可以手动模拟机器学习模型。第二是“可分解性”,即模型的每个部分都有直观的解释。第三是算法,算法应该有独一无二的解。

Agrawal认为:第一点有些问题,因为计算机的目的是自动完成人类在合理的时间内无法完成的任务。第二点讲得很好。第三点也有问题,因为即使在凸面上甚至都不能保证有唯一解。而算法的确定性问题已经不属于机器学习的范围。

Agrawal表示,在可解释性问题上,重要问题的有两点:

1. 这个模型是否能推广用在未见过的数据上面?如果在对某个推广假设试图证伪之后,该假设仍然成立,那么这个模型就是可解释的。我认为这与Lipton在此文中说的“可转移性”的概念差不多。

2. 该模型是否足够安全,比如是否能够防止欺骗?确定模型的安全性是一个悬而未决的问题。也许可以通过使用Lipton在他的论文中调查的一些工具来研究这个问题。不过我很清楚,验证神经网络模型的安全性要比对线性模型进行验证要困难得多。

参考链接:

https://www.akshayagrawal.com/papers/html/lipton2017.html

论文地址:

https://queue.acm.org/detail.cfm?id=3241340

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-07-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档